login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A155861 a(n) is the smallest integer k such that the n-th (backward) difference of the partition sequence A000041 is positive from k onwards. 2
1, 2, 8, 26, 68, 134, 228, 352, 510, 704, 934, 1204, 1514, 1866, 2260, 2702, 3188, 3722, 4304, 4936, 5620, 6354, 7140, 7980, 8872, 9822, 10826, 11888, 13006, 14182, 15416, 16712, 18066, 19480, 20956, 22494, 24096, 25760, 27486, 29278, 31134 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Using a different (forward) definition of the difference operator, this sequence has also been given as 0,1,6,23,64,129,222,... A119712.

LINKS

Table of n, a(n) for n=0..40.

Almkvist, Gert, "On the differences of the partition function", Acta Arith., 61.2 (1992), 173-181.

Knessl, Charles, "Asymptotic Behavior of High-Order Differences of the Partition Function", Communications on Pure and Applied Mathematics, 44 (1991), 1033-1045.

Odlyzko, A. M., "Differences of the partition function", Acta Arith., 49 (1988), 237-254.

Weisstein, Eric W., "Backward Difference".

FORMULA

An asymptotic formula is a(n) ~ 6/Pi^2 * n^2 (log n)^2.

MAPLE

A41:= n-> `if` (n<0, 0, combinat[numbpart](n)):

DB:= proc(p)

       proc(n) option remember;

         p(n) -p(n-1)

       end

     end:

a:= proc(n) option remember;

      local f, k;

      if n=0 then 1

             else f:= (DB@@n)(A41);

             for k from a(n-1) while not (f(k)>0 and f(k+1)>0) do od; k

      fi

    end:

seq (a(n), n=0..20);

CROSSREFS

Cf. A000041, A002865, A053445, A072380, A081094, A081095, A175804, A119712.

Sequence in context: A099416 A211885 A101696 * A212140 A136594 A268502

Adjacent sequences:  A155858 A155859 A155860 * A155862 A155863 A155864

KEYWORD

nonn

AUTHOR

Alois P. Heinz, Dec 16 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 11:24 EST 2016. Contains 278874 sequences.