

A155745


a(n) = number of distinct (n+1) nonnegative integer vectors describing, up to symmetry, the hyperplanes of the real ndimensional cube.


0




OFFSET

1,3


COMMENTS

Related to the sequence a'(n): 1,1,2,3,7,21,131. The sequence a'(n) has a recursive definition.
The following holds: a(n)>a'(n) for n>6.


REFERENCES

Ilda P. F. da Silva, Recursivity and geometry of the hypercube, Linear Algebra and its Apllications, 397(2005),223233


LINKS

Table of n, a(n) for n=1..7.


EXAMPLE

For n=3 a(3)=2 because the 2 vectors (0,0,1,1) and (1,1,1,1) describe all the real planes spanned by the points of {1,1}^3.


CROSSREFS

Cf. A007847
Sequence in context: A189360 A001532 A109456 * A067738 A296287 A187014
Adjacent sequences: A155742 A155743 A155744 * A155746 A155747 A155748


KEYWORD

hard,nonn


AUTHOR

Ilda P. F. da Silva (isilva(AT)cii.fc.ul.pt), Jan 26 2009


STATUS

approved



