login
A155734
Binomial transform of A154879.
0
3, 1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, 177147, 531441, 1594323, 4782969, 14348907, 43046721, 129140163, 387420489, 1162261467, 3486784401, 10460353203, 31381059609, 94143178827, 282429536481, 847288609443, 2541865828329
OFFSET
0,1
COMMENTS
Binomial transform of the third differences of A001045.
The binomial transform of the first differences of A001045 is in A133494.
The binomial transform of the 2nd differences of A001045 is in A133494, with the sign of A133494(0) flipped.
The binomial transform of the p-th differences of A001045 is the number A077925(p-1) followed by A000244.
FORMULA
From Colin Barker, Apr 05 2012: (Start)
a(n) = 3*a(n-1) for n > 1.
G.f.: (3-8*x)/(1-3*x). (End)
G.f.: (1 - 2/G(0))/x where G(k) = 1 + 2^k/(1 - 2*x/(2*x + 2^k/G(k+1))); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 06 2012
MAPLE
read("transforms") ; A001045 := proc(n) option remember ; if n <= 1 then n; else procname(n-1)+2*procname(n-2) ; fi; end:
a001045 := [seq(A001045(n), n=0..80) ] ; a154879 := DIFF(DIFF(DIFF(a001045))) ; BINOMIAL(a154879) ; # R. J. Mathar, Jul 23 2009
CROSSREFS
Cf. A154879, A078008. Essentially the same as A140429 and A000244.
Sequence in context: A160654 A146436 A058842 * A128162 A257253 A067329
KEYWORD
nonn,easy,less
AUTHOR
Paul Curtz, Jan 26 2009
EXTENSIONS
Edited and extended by R. J. Mathar, Jul 23 2009
STATUS
approved