login
A155729
Triangle read by rows, M * Q; M = (T(n,k) = A155728(n-k+1)); Q = (A155728 * 0^(n-k)).
2
1, 2, 1, 14, 2, 13, 121, 14, 6, 19, 1383, 121, 42, 38, 160, 19108, 1383, 363, 266, 320, 1744, 19108, 1383, 363, 266, 320, 1744, 309708, 19108, 4149, 2299, 2240, 3488, 23184, 2751027, 309708, 57324, 26277, 19360, 24416, 46368, 364176
OFFSET
1,2
COMMENTS
Row sums = A054765 starting with offset 1: (1, 3, 19, 160, 1744,...).
As a property of eigentriangles, sum of n-th row terms = rightmost term of next row.
A155728 = INVERTi transform of A054765: (1, 3, 19, 160, 1744,...).
FORMULA
M = an infinite lower triangular matrix with A155728 in every column:
(1, 2, 14, 121, 1383, 19108, 309708,...).
Q = an infinite lower triangular matrix with A054765 prefaced with a 1:
(1, 1, 3, 19, 160, 1744,...) as the main diagonal and the rest zeros.
EXAMPLE
First few rows of the triangle =
1;
2, 1;
14, 2, 3;
121, 14, 6, 19;
1383, 121, 42, 38, 160;
19108, 1383, 363, 266, 320, 1744;
309708, 19108, 4149, 2299, 2240, 3488, 23184;
2751027, 309708, 57324, 26277, 19360, 24416, 46368, 364176;
...
Example: Row 4 = = (121, 14, 6, 19) termwise products of (121, 14, 2, 1) and (1, 1, 3, 19).
CROSSREFS
KEYWORD
eigen,nonn,tabl
AUTHOR
Gary W. Adamson & Alexander R. Povolotsky, Jan 25 2009
STATUS
approved