|
|
A155728
|
|
INVERTi transform of A054765: (1, 3, 19, 160, 1744,...).
|
|
2
|
|
|
1, 2, 14, 121, 1383, 19108, 309708, 5751027, 120357325, 2803145494, 71926499002, 2016492639229, 61338391284387, 2012321446421976, 70833707268623448, 2663117961930477847, 106515148705020928105, 4516063573152118802282, 202328834841437929100838
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
A155728 convolved with A054765 prefaced with a 1: (1, 1, 3, 19, 160,...)
= (1, 3, 19, 160,...), equivalent to row sums of triangle A155729 = A054765.
|
|
LINKS
|
Table of n, a(n) for n=1..19.
|
|
FORMULA
|
INVERTi transform of A054765 starting with offset 1: (1, 3, 19, 160, 1774, 23184,...).
|
|
EXAMPLE
|
We write (1, 3, 19, 160,...) in reverse: (...19, 3, 1), top row.
Bottom row = (1, 2,...), so that the format for a(3) = 14 becomes:
...3, 1 = A054765: (1, 3, 19, 160,...). ...1, 2 for current format, take dot product = (3*1 + 1*2) = 5, then subtract from next term in A054765, getting (19 - 5) = 14. So a(3) = 14.
Continuing with analogous operations, we get (1, 2, 14, 121, 1383,...).
|
|
CROSSREFS
|
Cf. A054765, A155729.
Sequence in context: A277467 A208393 A192457 * A267906 A199560 A283184
Adjacent sequences: A155725 A155726 A155727 * A155729 A155730 A155731
|
|
KEYWORD
|
eigen,nonn
|
|
AUTHOR
|
Gary W. Adamson and Alexander R. Povolotsky, Jan 25 2009
|
|
EXTENSIONS
|
Corrected by R. J. Mathar, Apr 04 2012
More terms from Alois P. Heinz, Mar 31 2016
|
|
STATUS
|
approved
|
|
|
|