OFFSET
0,1
COMMENTS
Row sums are:
{2, -2, 6, -30, 210, -1890, 20790, -270270, 4054050, -68918850, 1309458150,...}.
The Stirling product form is: as even- odd factorization;
Product[x-i,{i,0,n}]=Product[x-(2*i),{i,0,Floor[n/2]}]*Product[x-(2*i+1),{i,0,Floor[n/2]}]
FORMULA
EXAMPLE
{2},
{-1, -1},
{9, -12, 9},
{-47, 32, 32, -47},
{385, -420, 280, -420, 385},
{-3839, 4354, -1460, -1460, 4354, -3839},
{46081, -56490, 26684, -11760, 26684, -56490, 46081},
{-645119, 836296, -418936, 92624, 92624, -418936, 836296, -645119},
{10321921, -14026824, 7562120, -2189376, 718368, -2189376, 7562120, -14026824, 10321921},
{-185794559, 262803366, -150102120, 46239920, -7606032, -7606032, 46239920, -150102120, 262803366, -185794559},
{3715891201, -5441863790, 3264920736, -1076561200, 221207888, -57731520, 221207888, -1076561200, 3264920736, -5441863790, 3715891201}
MATHEMATICA
Clear[p, x, n, b, a, b0];
p[x_, n_] := Product[x - (2*i), {i, 0, Floor[n/2]}]/x;
Table[Expand[ CoefficientList[ExpandAll[p[x, n]], x] + Reverse[CoefficientList[ExpandAll[p[x, n]], x]]], {n, 0, 20, 2}];
Flatten[%]
CROSSREFS
KEYWORD
uned,sign
AUTHOR
Roger L. Bagula, Jan 25 2009
STATUS
approved