login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = 6^n-5^n+1^n.
21

%I #22 Sep 08 2022 08:45:40

%S 1,2,12,92,672,4652,31032,201812,1288992,8124572,50700552,313968932,

%T 1932641712,11839990892,72260648472,439667406452,2668522016832,

%U 16163719991612,97745259402792,590286253682372,3560791008422352

%N a(n) = 6^n-5^n+1^n.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (12,-41,30).

%F G.f.: 1/(1-6*x)-1/(1-5*x)+1/(1-x).

%F E.g.f.: e^(6*x)-e^(5*x)+e^x.

%F a(n) = 11*a(n-1)-30*a(n-2)+20 with a(0)=1, a(1)=2. - _Vincenzo Librandi_, Jul 21 2010

%p A155639:=n->6^n - 5^n + 1: seq(A155639(n), n=0..20); # _Wesley Ivan Hurt_, Nov 20 2014

%t Table[6^n - 5^n + 1, {n, 0, 20}] (* _Wesley Ivan Hurt_, Nov 20 2014 *)

%t LinearRecurrence[{12,-41,30},{1,2,12},30] (* _Harvey P. Dale_, Aug 23 2016 *)

%o (Magma) [6^n - 5^n + 1 : n in [0..20]]; // _Wesley Ivan Hurt_, Nov 20 2014

%o (PARI) a(n)=6^n-5^n+1 \\ _Charles R Greathouse IV_, Sep 24 2015

%Y Cf. A155624, A155625, A155626, A155627, A155628, A155629, A155630, A155631, A155632, A155633, A155634, A155635, A155636, A155637, A155638.

%K nonn,easy

%O 0,2

%A _Mohammad K. Azarian_, Jan 30 2009