login
A155576
Intersection of A000404 and A155716: N = a^2 + b^2 = c^2 + 6d^2 for some positive integers a,b,c,d.
1
10, 25, 40, 58, 73, 90, 97, 100, 106, 145, 160, 193, 202, 225, 232, 241, 250, 265, 292, 298, 313, 337, 346, 360, 388, 394, 400, 409, 424, 433, 457, 490, 505, 522, 538, 577, 580, 586, 601, 625, 634, 640, 657, 673, 730, 745, 769, 772, 778, 808, 810, 841, 865
OFFSET
1,1
COMMENTS
Subsequence of A155566 (where a,b,c,d may be zero).
PROG
(PARI) isA155576(n, /* optional 2nd arg allows us to get other sequences */c=[6, 1]) = { for(i=1, #c, for(b=1, sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return); 1}
for( n=1, 999, isA155576(n) & print1(n", "))
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
M. F. Hasler, Jan 25 2009
STATUS
approved