login
A155575
Intersection of A000404 and A154778: N = a^2 + b^2 = c^2 + 5d^2 for some positive integers a,b,c,d.
1
29, 41, 45, 61, 89, 101, 109, 116, 145, 149, 164, 180, 181, 205, 225, 229, 241, 244, 245, 261, 269, 281, 305, 349, 356, 369, 389, 401, 404, 405, 409, 421, 436, 445, 449, 461, 464, 505, 509, 521, 541, 545, 549, 569, 580, 596, 601, 641, 656, 661, 701, 709, 720
OFFSET
1,1
COMMENTS
Subsequence of A155565 (where a,b,c,d may be zero).
PROG
(PARI) isA155575(n, /* optional 2nd arg allows us to get other sequences */c=[5, 1]) = { for(i=1, #c, for(b=1, sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return); 1}
for( n=1, 999, isA155575(n) & print1(n", "))
KEYWORD
easy,nonn
AUTHOR
M. F. Hasler, Jan 25 2009
STATUS
approved