login
A155571
Intersection of A000404, A092572 and A154778: N = a^2 + b^2 = c^2 + 3d^2 = e^2 + 5f^2 for some positive integers a,b,c,d,e,f.
0
61, 109, 181, 229, 241, 244, 349, 409, 421, 436, 541, 549, 601, 661, 709, 724, 769, 829, 900, 916, 964, 976, 981, 1009, 1021, 1069, 1129, 1201, 1225, 1249, 1321, 1381, 1396, 1429, 1489, 1521, 1525, 1549, 1609, 1621, 1629, 1636, 1669, 1684, 1741, 1744, 1789
OFFSET
1,1
PROG
(PARI) isA155571(n, /* optional 2nd arg allows us to get other sequences */c=[5, 3, 1]) = { for(i=1, #c, for(b=1, sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return); 1}
for( n=1, 1999, isA155571(n) & print1(n", "))
KEYWORD
easy,nonn
AUTHOR
M. F. Hasler, Jan 25 2009
STATUS
approved