login
A155566
Intersection of A001481 and A002481: N = a^2 + b^2 = c^2 + 6d^2 for some integers a,b,c,d.
1
0, 1, 4, 9, 10, 16, 25, 36, 40, 49, 58, 64, 73, 81, 90, 97, 100, 106, 121, 144, 145, 160, 169, 193, 196, 202, 225, 232, 241, 250, 256, 265, 289, 292, 298, 313, 324, 337, 346, 360, 361, 388, 394, 400, 409, 424, 433, 441, 457, 484, 490, 505, 522, 529, 538, 576
OFFSET
1,3
COMMENTS
Contains A155576 as a subsequence (obtained by restricting a,b,c,d to be nonzero). Also contains A000290 (squares) as subsequence.
PROG
(PARI) isA155566(n, /* use optional 2nd arg to get other analogous sequences */c=[6, 1]) = { for(i=1, #c, for(b=0, sqrtint(n\c[i]), issquare(n-c[i]*b^2) & next(2)); return); 1}
for( n=1, 600, isA155566(n) & print1(n", "))
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
M. F. Hasler, Jan 25 2009
STATUS
approved