login
A155203
G.f.: A(x) = exp( Sum_{n>=1} 3^(n^2) * x^n/n ), a power series in x with integer coefficients.
11
1, 3, 45, 6687, 10782369, 169490304819, 25016281429306077, 34185693516532070487615, 429210580094546346191627404353, 49269611092414945570325157106493868771
OFFSET
0,2
COMMENTS
More generally, for m integer, exp( Sum_{n>=1} m^(n^2) * x^n/n ) is a power series in x with integer coefficients.
FORMULA
Equals column 0 of triangle A155812.
G.f. satisfies: A'(x)/A(x) = 3 + 27*x*A'(9*x)/A(9*x). - Paul D. Hanna, Nov 15 2022
a(n) ~ 3^(n^2)/n. - Vaclav Kotesovec, Oct 31 2024
EXAMPLE
G.f.: A(x) = 1 + 3*x + 45*x^2 + 6687*x^3 + 10782369*x^4 + 169490304819*x^5 +...
log(A(x)) = 3*x + 3^4*x^2/2 + 3^9*x^3/3 + 3^16*x^4/4 + 3^25*x^5/5 +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, 3^(m^2)*x^m/m)+x*O(x^n)), n)}
CROSSREFS
Cf. A155204, A155205, A155206, A155812 (triangle), variants: A155200, A155207.
Sequence in context: A265621 A124488 A086683 * A183131 A370458 A037105
KEYWORD
nonn,changed
AUTHOR
Paul D. Hanna, Feb 04 2009
STATUS
approved