|
|
A155203
|
|
G.f.: A(x) = exp( Sum_{n>=1} 3^(n^2) * x^n/n ), a power series in x with integer coefficients.
|
|
11
|
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
More generally, for m integer, exp( Sum_{n>=1} m^(n^2) * x^n/n ) is a power series in x with integer coefficients.
|
|
LINKS
|
Table of n, a(n) for n=0..9.
|
|
FORMULA
|
Equals column 0 of triangle A155812.
|
|
EXAMPLE
|
G.f.: A(x) = 1 + 3*x + 45*x^2 + 6687*x^3 + 10782369*x^4 + 169490304819*x^5 +...
log(A(x)) = 3*x + 3^4*x^2/2 + 3^9*x^3/3 + 3^16*x^4/4 + 3^25*x^5/5 +...
|
|
PROG
|
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, 3^(m^2)*x^m/m)+x*O(x^n)), n)}
|
|
CROSSREFS
|
Cf. A155204, A155205, A155206, A155812 (triangle), variants: A155200, A155207.
Sequence in context: A265621 A124488 A086683 * A183131 A037105 A196137
Adjacent sequences: A155200 A155201 A155202 * A155204 A155205 A155206
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Paul D. Hanna, Feb 04 2009
|
|
STATUS
|
approved
|
|
|
|