login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A155200 G.f.: A(x) = exp( Sum_{n>=1} 2^(n^2) * x^n/n ), a power series in x with integer coefficients. 45
1, 2, 10, 188, 16774, 6745436, 11466849412, 80444398636280, 2306003967992402758, 268654794629082985019564, 126765597346260977505891041836, 241678070948246232010898235031930952, 1858395916567787793818891330877931472153500, 57560683587056536617649234722821582390470430186648 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

More generally, it appears that for m integer, exp( Sum_{n >= 1} m^(n^2) * x^n/n ) is a power series in x with integer coefficients.

Conjecture: highest exponent of 2 dividing a(n) = A000120(n) = number of 1's in binary expansion of n, so that a(n)/2^A000120(n) is odd for n >= 0. - Paul D. Hanna, Sep 01 2009

LINKS

Table of n, a(n) for n=0..13.

FORMULA

Equals column 0 of triangle A155810.

G.f. satisfies: 2*A(x)*A(4x) + 8*x*A(x)*A'(4x) - A'(x)*A(4x) = 0. - Paul D. Hanna, Feb 24 2009

Contribution from Paul D. Hanna, Mar 11 2009: (Start)

The differential equation implies recurrence:

n*a(n) = 2*a(n-1) + sum(k = 1, n - 1, 4^k*a(k)*[2*(k+1)*a(n-1-k) - (n-k)*a(n-k)] for n > 0, with a(0) = 1.

G.f. A(x) generates A156631:

A156631(n) = [x^n] A(x)^(2^n) for n >= 0, where the g.f. of A156631 = Sum_{n >= 0} [Sum_{k >= 1} (2^n*2^k*x)^k/k]^n/n!. (End)

a(n) = (1/n)*Sum_{k = 1..n} 2^(k^2)*a(n-k), a(0) = 1. - Vladeta Jovovic, Feb 04 2009

Euler transform of A159034. - Vladeta Jovovic, Apr 02 2009

a(n) = B_n( 0!*2^(1^2), 1!*2^(2^2), 2!*2^(3^2), ..., (n-1)!*2^(n^2) ) / n!, where B_n() is the complete Bell polynomial. - Max Alekseyev, Oct 10 2014

EXAMPLE

G.f.: A(x) = 1 + 2*x + 10*x^2 + 188*x^3 + 16774*x^4 + 6745436*x^5 +...

log(A(x)) = 2*x + 2^4*x^2/2 + 2^9*x^3/3 + 2^16*x^4/4 + 2^25*x^5/5 +...

PROG

(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, 2^(m^2)*x^m/m)+x*O(x^n)), n)}

(PARI) {a(n)=if(n==0, 1, (1/n)*(2*a(n-1) + sum(k=1, n-1, 4^k*a(k)*(2*(k+1)*a(n-1-k) - (n-k)*a(n-k)))))} \\ Paul D. Hanna, Mar 11 2009

(PARI) {a(n)=if(n==0, 1, (1/n)*sum(k=1, n, 2^(k^2)*a(n-k)))} \\ Paul D. Hanna, Sep 01 2009

CROSSREFS

Cf. A155201, A155202, A155810 (triangle), variants: A155203, A155207.

Cf. A000120, A156631,  A159034.

Sequence in context: A037267 A177399 A194971 * A264563 A156510 A246532

Adjacent sequences:  A155197 A155198 A155199 * A155201 A155202 A155203

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Feb 04 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 29 11:23 EDT 2017. Contains 287246 sequences.