login
A155173
Short leg A of primitive Pythagorean triangles such that perimeter s is average of twin prime pairs, q=p+1, A=q^2-p^2, C=q^2+p^2, B=2*p*q, s=A+B+C; s -/+ 1 are primes.
10
3, 5, 15, 21, 41, 59, 89, 101, 131, 141, 153, 155, 203, 209, 215, 231, 309, 351, 395, 405, 453, 455, 495, 551, 743, 761, 825, 915, 981, 1001, 1149, 1193, 1295, 1343, 1365, 1421, 1529, 1659, 1853, 2105, 2171, 2205, 2255, 2373, 2409, 2411, 2451, 2513, 2561, 2649
OFFSET
1,1
COMMENTS
With p=1, then q=2,a=3,b=4,c=5, and s=12-+1 (11, 13) both primes.
MATHEMATICA
lst={}; Do[p=n; q=p+1; a=q^2-p^2; c=q^2+p^2; b=2*p*q; s=a+b+c; If[PrimeQ[s-1]&&PrimeQ[s+1], AppendTo[lst, a]], {n, 8!}]; lst
KEYWORD
nonn
AUTHOR
EXTENSIONS
Name edited by Zak Seidov, Mar 21 2014
STATUS
approved