login
A155171
Numbers p such that if q = p+1 then (a = q^2-p^2, b = 2*p*q, c = q^2 + p^2) is a primitive Pythagorean triple with s-1 and s+1 primes, where s = a+b+c.
10
1, 2, 7, 10, 20, 29, 44, 50, 65, 70, 76, 77, 101, 104, 107, 115, 154, 175, 197, 202, 226, 227, 247, 275, 371, 380, 412, 457, 490, 500, 574, 596, 647, 671, 682, 710, 764, 829, 926, 1052, 1085, 1102, 1127, 1186, 1204, 1205, 1225, 1256, 1280, 1324, 1325, 1331
OFFSET
1,2
EXAMPLE
p=1,q=2,a=3,b=4,c=5,s=12-+1 primes.
MATHEMATICA
lst={}; Do[p=n; q=p+1; a=q^2-p^2; c=q^2+p^2; b=2*p*q; s=a+b+c; If[PrimeQ[s-1]&&PrimeQ[s+1], AppendTo[lst, n]], {n, 8!}]; lst
KEYWORD
nonn
AUTHOR
EXTENSIONS
Definition edited by N. J. A. Sloane, Jul 19 2022
STATUS
approved