login
A155136
Integers k such that k + 28 is a square.
4
-28, -27, -24, -19, -12, -3, 8, 21, 36, 53, 72, 93, 116, 141, 168, 197, 228, 261, 296, 333, 372, 413, 456, 501, 548, 597, 648, 701, 756, 813, 872, 933, 996, 1061, 1128, 1197, 1268, 1341, 1416, 1493, 1572, 1653, 1736, 1821, 1908, 1997, 2088, 2181, 2276, 2373
OFFSET
1,1
COMMENTS
Values x of nonzero solutions (x,y) to the Diophantine equation x^3 + 28*x^2 = y^2. Corresponding values y are in A155137.
Agrees with A155135 except for omission of zero after a(6) = 3.
FORMULA
a(n) = n^2 - 2*n - 27.
G.f.: -(4-3*x)*(7-9*x)/(1-x)^3.
From Elmo R. Oliveira, Oct 31 2024: (Start)
E.g.f.: exp(x)*(x^2 - x - 27) + 27.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
EXAMPLE
For k = -19, k + 28 = 9 = 3^2 is a square.
For k = -3, k + 28 = 25 = 5^2 is a square.
For k = 21, k + 28 = 49 = 7^2 is a square.
MATHEMATICA
Range[0, 50]^2-28 (* or *) LinearRecurrence[{3, -3, 1}, {-28, -27, -24}, 50] (* Harvey P. Dale, May 15 2023 *)
PROG
(Magma) [ n: n in [ -30..2500] | IsSquare(n+28) ];
(PARI) a(n)=n^2-2*n-27 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
KEYWORD
sign,easy,changed
AUTHOR
Klaus Brockhaus, Jan 21 2009
STATUS
approved