The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A155128 Primes P(n) such that 2*P(n) - P(n+1) has all factors less than P(n+1) - P(n). This means that no prime less than P(n) can divide P(n) to give a remainder added to P(n) to give P(n+1). 0
 3, 7, 13, 31, 89, 113, 131, 449, 577, 683, 743, 839, 887, 1039, 1237, 1637, 1831, 2039, 2213, 2221, 2557, 2843, 2939, 3391, 3947, 4111, 4139, 4889, 5281, 5987, 6803, 6841, 7883, 8513, 10667, 10739, 13381, 13487, 14177, 14563, 14639, 15319, 15443, 16273 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS These primes need not necessarily occur before a large prime gap. Do they occur less frequently than twin primes? LINKS FORMULA Found by inspecting a table of factors and primes. EXAMPLE For P(n)=1237 and P(n+1)=1249, 2*1237 - 1249 = 1225 = 5^2 * 7^2 and 5,7 < 1249 - 1237 = 12. MATHEMATICA Join[{3}, Prime[Select[Range[3, 2000], FactorInteger[2*Prime[ # ] - Prime[ # + 1]][[ -1, 1]] < Prime[ # + 1] - Prime[ # ] &]]] (* Stefan Steinerberger, Jan 31 2009 *) CROSSREFS Sequence in context: A126879 A247895 A336688 * A176589 A077314 A069246 Adjacent sequences: A155125 A155126 A155127 * A155129 A155130 A155131 KEYWORD base,easy,nonn AUTHOR J. M. Bergot, Jan 20 2009 EXTENSIONS Corrected and extended by Stefan Steinerberger, Jan 31 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 31 18:34 EST 2023. Contains 359980 sequences. (Running on oeis4.)