The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A155124 Triangle T(n, k) = 1-n if k=0 else 2, read by rows. 2

%I

%S 1,0,2,-1,2,2,-2,2,2,2,-3,2,2,2,2,-4,2,2,2,2,2,-5,2,2,2,2,2,2,-6,2,2,

%T 2,2,2,2,2,-7,2,2,2,2,2,2,2,2,-8,2,2,2,2,2,2,2,2,2,-9,2,2,2,2,2,2,2,2,

%U 2,2,-10,2,2,2,2,2,2,2,2,2,2,2,-11,2,2,2,2,2,2,2,2,2,2,2,2

%N Triangle T(n, k) = 1-n if k=0 else 2, read by rows.

%C These polynomials in n are column functions for general Pascal-Sierpinski triangles.

%H G. C. Greubel, <a href="/A155124/b155124.txt">Rows n = 0..50 of the triangle, flattened</a>

%F Let p(x,m) = (1-m) + 2*x*(1-x^m)/(1-x) then the triangle is given by T(n, k) = coefficients( p(x,n) ).

%F Coefficient triangle of polynomial: p(x,n)= 1-m + 2*Sum_{k=1..n} x^k.

%F From _G. C. Greubel_, Mar 25 2021: (Start)

%F T(n, k) = 1-n if k=0 else 2.

%F Sum_{k=0..n} T(n ,k) = n+1 = A000027(n+1). (End)

%e Triangle begins as:

%e 1;

%e 0, 2;

%e -1, 2, 2;

%e -2, 2, 2, 2;

%e -3, 2, 2, 2, 2;

%e -4, 2, 2, 2, 2, 2;

%e -5, 2, 2, 2, 2, 2, 2;

%e -6, 2, 2, 2, 2, 2, 2, 2;

%e -7, 2, 2, 2, 2, 2, 2, 2, 2;

%e -8, 2, 2, 2, 2, 2, 2, 2, 2, 2;

%e -9, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2;

%t Table[CoefficientList[-(m-1) + 2*x*(1-x^m)/(1-x), x], {m,0,15}]//Flatten

%t Table[If[k==0, 1-n, 2], {n,0,15}, {k,0,n}]//Flatten (* _G. C. Greubel_, Mar 25 2021 *)

%o (Magma) [k eq 0 select 1-n else 2: k in [0..n], n in [0..15]]; // _G. C. Greubel_, Mar 25 2021

%o (Sage) flatten([[1-n if k==0 else 2 for k in (0..n)] for n in (0..15)]) # _G. C. Greubel_, Mar 25 2021

%K sign

%O 0,3

%A _Roger L. Bagula_, Jan 20 2009

%E Edited by _G. C. Greubel_, Mar 25 2021

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 19:07 EST 2022. Contains 358563 sequences. (Running on oeis4.)