The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A155124 Triangle T(n, k) = 1-n if k=0 else 2, read by rows. 2
 1, 0, 2, -1, 2, 2, -2, 2, 2, 2, -3, 2, 2, 2, 2, -4, 2, 2, 2, 2, 2, -5, 2, 2, 2, 2, 2, 2, -6, 2, 2, 2, 2, 2, 2, 2, -7, 2, 2, 2, 2, 2, 2, 2, 2, -8, 2, 2, 2, 2, 2, 2, 2, 2, 2, -9, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -10, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -11, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS These polynomials in n are column functions for general Pascal-Sierpinski triangles. LINKS G. C. Greubel, Rows n = 0..50 of the triangle, flattened FORMULA Let p(x,m) = (1-m) + 2*x*(1-x^m)/(1-x) then the triangle is given by T(n, k) = coefficients( p(x,n) ). Coefficient triangle of polynomial: p(x,n)= 1-m + 2*Sum_{k=1..n} x^k. From G. C. Greubel, Mar 25 2021: (Start) T(n, k) = 1-n if k=0 else 2. Sum_{k=0..n} T(n ,k) = n+1 = A000027(n+1). (End) EXAMPLE Triangle begins as: 1; 0, 2; -1, 2, 2; -2, 2, 2, 2; -3, 2, 2, 2, 2; -4, 2, 2, 2, 2, 2; -5, 2, 2, 2, 2, 2, 2; -6, 2, 2, 2, 2, 2, 2, 2; -7, 2, 2, 2, 2, 2, 2, 2, 2; -8, 2, 2, 2, 2, 2, 2, 2, 2, 2; -9, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2; MATHEMATICA Table[CoefficientList[-(m-1) + 2*x*(1-x^m)/(1-x), x], {m, 0, 15}]//Flatten Table[If[k==0, 1-n, 2], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 25 2021 *) PROG (Magma) [k eq 0 select 1-n else 2: k in [0..n], n in [0..15]]; // G. C. Greubel, Mar 25 2021 (Sage) flatten([[1-n if k==0 else 2 for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Mar 25 2021 CROSSREFS Sequence in context: A339932 A254690 A156642 * A138033 A283876 A067754 Adjacent sequences: A155121 A155122 A155123 * A155125 A155126 A155127 KEYWORD sign AUTHOR Roger L. Bagula, Jan 20 2009 EXTENSIONS Edited by G. C. Greubel, Mar 25 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 29 00:02 EST 2023. Contains 359905 sequences. (Running on oeis4.)