|
|
A155120
|
|
2*(n^3+n^2+n-1).
|
|
3
|
|
|
-2, 4, 26, 76, 166, 308, 514, 796, 1166, 1636, 2218, 2924, 3766, 4756, 5906, 7228, 8734, 10436, 12346, 14476, 16838, 19444, 22306, 25436, 28846, 32548, 36554, 40876, 45526, 50516, 55858
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Next level down in the triangle from A142463 =f[n].
{{1},
{1, 1},
{1, 2*n, 1},
{1, f[n], f[n], 1},
{1, g[n], 6 + 24 *(n - 1) + 28*(n - 1)^2 + 8* ( n - 1)^3, g[n], 1},
{1, h[n], k[n - 1] - h[n] - 1, k[n - 1] - h[n] - 1, h[n], 1}}
f[n_]=3*n^2 - (n - 1)^2;
g[n_]=-2 + 2 *n + 2* n^2 + 2 n^3;
h[n_]=-3 + 2 n + 2 n^2 + 2 n^3 + 2*n^4;
k[n_]=16+ 80 n + 140 *n^2 + 100*n^3 + 24* n^4;
These functions and the triangles they make are general Pascal-Sierpinski
functions.
[What is the definition or principle of construction of this triangle and its polynomials? R. J. Mathar, Dec 15 2010]
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..2000
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
|
|
FORMULA
|
a(n) = 2*(n^3+n^2+n-1).
G.f.: 2*(-1+6*x-x^2+2*x^3)/(x-1)^4.
|
|
MATHEMATICA
|
Table[ -2 + 2 n + 2 n^2 + 2 n^3, {n, 0, 30}]
LinearRecurrence[{4, -6, 4, -1}, {-2, 4, 26, 76}, 40] (* Harvey P. Dale, Jun 06 2014 *)
|
|
PROG
|
(MAGMA) [2*(n^3+n^2+n-1): n in [0..40] ]; // Vincenzo Librandi, May 23 2011
|
|
CROSSREFS
|
Cf. A142463, A155121 - A155124.
Sequence in context: A129894 A028386 A259374 * A144691 A085700 A087404
Adjacent sequences: A155117 A155118 A155119 * A155121 A155122 A155123
|
|
KEYWORD
|
sign,easy
|
|
AUTHOR
|
Roger L. Bagula, Jan 20 2009
|
|
STATUS
|
approved
|
|
|
|