login
A155117
a(n) = 4*a(n-1) + 4*a(n-2), n>2, a(0)=1, a(1)=3, a(2)=15.
11
1, 3, 15, 72, 348, 1680, 8112, 39168, 189120, 913152, 4409088, 21288960, 102792192, 496324608, 2396467200, 11571167232, 55870537728, 269766819840, 1302549430272, 6289265000448, 30367257722880, 146626090893312
OFFSET
0,2
LINKS
FORMULA
G.f.: (1-x-x^2)/(1-4*x-4*x^2) . a(n)=3*A086347(n), n>=1 .
From G. C. Greubel, Mar 25 2021: (Start)
a(n) = (1/4)*[n=0] - 3*(2*i)^(n-2)*ChebyshevU(n, -i).
a(n) = (1/4)*[n=0] + 3*2^(n-2)*P_{n+1}, where P_{n} = A000129(n) (Pell numbers). (End)
MAPLE
1, seq(simplify(-3*(2*I)^(n-2)*ChebyshevU(n, -I)), n = 1..30); # G. C. Greubel, Mar 25 2021
MATHEMATICA
With[{m=4}, LinearRecurrence[{m, m}, {1, m-1, m^2-1}, 30]] (* G. C. Greubel, Mar 25 2021 *)
PROG
(Magma) m:=4; [1] cat [n le 2 select (m-1)*(m*n-(m-1)) else m*(Self(n-1) + Self(n-2)): n in [1..30]]; // G. C. Greubel, Mar 25 2021
(Sage) m=4; [1]+[-(m-1)*(sqrt(m)*i)^(n-2)*chebyshev_U(n, -sqrt(m)*i/2) for n in (1..30)] # G. C. Greubel, Mar 25 2021
CROSSREFS
Sequences of the form a(n) = m*(a(n-1) + a(n-2)) with a(0)=1, a(1) = m-1, a(2) = m^2 -1: A155020 (m=2), A155116 (m=3), this sequence (m=4), A155119 (m=5), A155127 (m=6), A155130 (m=7), A155132 (m=8), A155144 (m=9), A155157 (m=10).
Cf. A000129.
Sequence in context: A123942 A357161 A290902 * A137638 A156019 A145839
KEYWORD
nonn
AUTHOR
Philippe Deléham, Jan 20 2009
STATUS
approved