login
A155110
a(n) = 8*Fibonacci(2n+1).
3
8, 16, 40, 104, 272, 712, 1864, 4880, 12776, 33448, 87568, 229256, 600200, 1571344, 4113832, 10770152, 28196624, 73819720, 193262536, 505967888, 1324641128, 3467955496, 9079225360, 23769720584, 62229936392, 162920088592, 426530329384, 1116670899560
OFFSET
0,1
FORMULA
a(n) = 8*A001519(n+1) = 8*A122367(n) = 8 *|A099496(n)|.
a(n) == A154811(n+6) (mod 9).
a(n) == A156551(n) (mod 10).
a(n) = A153873(n) - A027941(n).
G.f.: 8*(1 - x)/(1 - 3*x + x^2). - G. C. Greubel, Apr 21 2021
MAPLE
A155110 := proc(n) 8*combinat[fibonacci](2*n+1) ; end: seq(A155110(n), n=0..50) ; # R. J. Mathar, Oct 06 2009
MATHEMATICA
8*Fibonacci[2*Range[0, 30]+1] (* G. C. Greubel, Apr 21 2021 *)
PROG
(Magma) [8*Fibonacci(2*n+1): n in [0..30]]; // Vincenzo Librandi, Aug 07 2011
(Sage) [8*fibonacci(2*n+1) for n in (0..30)] # G. C. Greubel, Apr 21 2021
KEYWORD
nonn,easy,less
AUTHOR
Paul Curtz, Jan 20 2009
EXTENSIONS
Comments converted to formulas by R. J. Mathar, Oct 06 2009
STATUS
approved