login
A155106
For each term n in this sequence, both n and n+1 can expressed as sum of three distinct nonzero squares in 2 or more ways
0
89, 125, 149, 154, 165, 173, 181, 185, 194, 209, 217, 221, 229, 233, 237, 241, 245, 248, 249, 250, 269, 273, 274, 275, 281, 285, 293, 296, 301, 305, 308, 309, 314, 317, 321, 325, 329, 333, 338, 341, 344, 345, 346, 349, 353, 354, 355, 356, 360, 361, 365, 369, 370, 373, 376, 377, 381, 385, 389, 392
OFFSET
1,1
EXAMPLE
Considering the term 149, 149 = 1^2+2^2+12^2 = 2^2+8^2+9^2 = 6^2+7^2+8^2 and 150 = 1^2+7^2+10^2 = 2^2+5^2+11^2
CROSSREFS
Subset of A024804, any A024804(n) is contained in this sequence if A024804(n)+1=A024804(n+1)
Sequence in context: A083371 A124583 A257843 * A132258 A257860 A256242
KEYWORD
nonn
AUTHOR
Avik Roy (avik_3.1416(AT)yahoo.co.in), Jan 20 2009
EXTENSIONS
Description clarified by Harvey P. Dale, Dec. 13, 2010
STATUS
approved