|
|
A155033
|
|
Matrix inverse of A155031.
|
|
5
|
|
|
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 3, 2, 1, 1, 0, 4, 3, 2, 1, 1, 0, 10, 7, 4, 2, 1, 1, 0, 18, 13, 7, 4, 2, 1, 1, 0, 37, 26, 15, 8, 4, 2, 1, 1, 0, 71, 51, 29, 15, 8, 4, 2, 1, 1, 0, 146, 104, 59, 31, 16, 8, 4, 2, 1, 1, 0, 285, 203, 115, 61, 31, 16, 8, 4, 2, 1, 1, 0, 577, 411, 233, 123, 63, 32, 16, 8, 4, 2, 1, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,12
|
|
LINKS
|
G. C. Greubel, Rows n = 1..50 of the triangle, flattened
|
|
FORMULA
|
Sum_{k=1..n} T(n,k) = A101173(n). - G. C. Greubel, Mar 15 2021
|
|
EXAMPLE
|
Table begins and row sums are:
1 = 1;
0, 1 = 1;
0, 1, 1 = 2;
0, 1, 1, 1 = 3;
0, 3, 2, 1, 1 = 7;
0, 4, 3, 2, 1, 1 = 11;
0, 10, 7, 4, 2, 1, 1 = 25;
0, 18, 13, 7, 4, 2, 1, 1 = 46;
0, 37, 26, 15, 8, 4, 2, 1, 1 = 94;
|
|
MATHEMATICA
|
A155031[n_, k_]:= If[k>n, 0, If[k==n, 1, If[k==1 || Mod[n, k]==0, 0, -1]]];
A155033:= Inverse[Table[A155031[n, k], {n, 30}, {k, 30}]];
Table[A155033[[n, k]], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Mar 15 2021 *)
|
|
CROSSREFS
|
Cf. A101173.
Sequence in context: A199324 A287576 A035103 * A283417 A107889 A138384
Adjacent sequences: A155030 A155031 A155032 * A155034 A155035 A155036
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
Mats Granvik, Jan 19 2009
|
|
STATUS
|
approved
|
|
|
|