The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A155029 Complement to A051731 with the identity matrix A023531 included. 2
 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS G. C. Greubel, Rows n = 1..30 of the triangle, flattened FORMULA T(n, k) = 0 if n==0 (mod k) otherwise 1 with T(n, n) = 1 and T(n, 1) = 0. - G. C. Greubel, Mar 07 2021 EXAMPLE Table begins: 1; 0, 1; 0, 1, 1; 0, 0, 1, 1; 0, 1, 1, 1, 1; 0, 0, 0, 1, 1, 1; 0, 1, 1, 1, 1, 1, 1; 0, 0, 1, 0, 1, 1, 1, 1; 0, 1, 0, 1, 1, 1, 1, 1, 1; MATHEMATICA Table[If[k==n, 1, If[k==0, 0, If[Mod[n, k]==0, 0, 1]]], {n, 20}, {k, n}]//Flatten (* G. C. Greubel, Mar 07 2021 *) PROG (Sage) flatten([[1 if k==n else 0 if (k==0 or n%k==0) else 1 for k in [1..n]] for n in [1..20]]) # G. C. Greubel, Mar 07 2021 (Magma) [k eq n select 1 else (k eq 0 or n mod k eq 0) select 0 else 1: k in [1..n], n in [1..20]]; // G. C. Greubel, Mar 07 2021 CROSSREFS Cf. A023531, A051731, A155031. Sequence in context: A117446 A187034 A101688 * A155031 A134540 A318962 Adjacent sequences: A155026 A155027 A155028 * A155030 A155031 A155032 KEYWORD nonn,tabl AUTHOR Mats Granvik, Jan 19 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 01:51 EST 2022. Contains 358672 sequences. (Running on oeis4.)