OFFSET
1,1
LINKS
Robert Israel, Table of n, a(n) for n = 1..6000
Wikipedia, Pythagorean triple
Eric Rowland, Primitive Integral Solutions to x^2 + y^2 = z^2
EXAMPLE
165 exists in 3 Pythagorean triples as right-angle adjacent side, (165, 52, 173), (165, 532, 557), (165, 1508, 1517); among these the first two have prime hypotenuse.
MAPLE
filter:= x -> nops(select(t -> subs(t, y)>0 and subs(t, z) > 0 and isprime(subs(t, z)), [isolve(x^2=z^2-y^2)]))>1:
select(filter, [seq(i, i=1..1000, 2)]); # Robert Israel, Aug 30 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Avik Roy (avik_3.1416(AT)yahoo.co.in), Jan 18 2009
EXTENSIONS
Data corrected by Robert Israel, Aug 30 2016
STATUS
approved