login
A154963
Primes p such that the concatenation of p and prime(p) is prime.
2
2, 17, 23, 41, 61, 71, 83, 127, 227, 337, 353, 499, 503, 571, 727, 887, 911, 937, 971, 1061, 1427, 1579, 1663, 1693, 1709, 1871, 1877, 1907, 1949, 1973, 2017, 2063, 2081, 2239, 2339, 2393, 2467, 2713, 2797, 2939, 2999, 3181, 3271, 3463, 3643, 3659, 3677
OFFSET
1,1
LINKS
EXAMPLE
Concatenation of prime 2 and second prime 3 is the prime 23, hence 2 is in the sequence.
Concatenation of prime 23 and 23rd prime 83 is the prime 2383, hence 23 is in the sequence.
MATHEMATICA
A154963 = Select[ Prime[ Range[ 550 ] ], PrimeQ[ FromDigits[ Join[ IntegerDigits[ # ], IntegerDigits[ Prime[ # ] ] ] ] ] & ] (* Alonso del Arte Nov 12 2009 *)
PROG
(Magma) [ p: p in PrimesUpTo(3700) | IsPrime(StringToInteger(IntegerToString(p) cat IntegerToString(NthPrime(p)))) ];
CROSSREFS
Cf. A045532, A155032 (resulting primes).
Sequence in context: A094668 A019421 A105901 * A343241 A049562 A107137
KEYWORD
nonn,base,easy,less
AUTHOR
EXTENSIONS
Edited and extended beyond a(3) by Klaus Brockhaus, Jan 20 2009
STATUS
approved