OFFSET
1,1
COMMENTS
That is, primes p such that p^2+p-1 and p^2-p-1 are both primes: intersection of A053184 and A091567. - Michel Marcus, Jul 10 2016
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
EXAMPLE
2*4=8-+3 -> primes, 4*6=24-+5 -> primes,...
MATHEMATICA
lst={}; Do[p=Prime[n]; If[PrimeQ[(p-1)*(p+1)-p]&&PrimeQ[(p-1)*(p+1)+p], AppendTo[lst, p]], {n, 7!}]; lst
Select[Prime[Range[1500]], And@@PrimeQ/@{#^2 - # - 1, #^2 + # - 1} &] (* Vincenzo Librandi, Jul 10 2016 *)
Select[Prime[Range[1500]], AllTrue[(#-1)(#+1)+{#, -#}, PrimeQ]&] (* Harvey P. Dale, Sep 21 2023 *)
PROG
(Magma) [p: p in PrimesUpTo(10000) | IsPrime(p^2+p-1) and IsPrime(p^2-p-1)]; // Vincenzo Librandi, Jul 10 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Joseph Stephan Orlovsky, Jan 17 2009
STATUS
approved