This site is supported by donations to The OEIS Foundation.

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A154867 A triangular sequence of polynomial coefficients: p(x,n) = Sum[m^n*x^m/m!, {m, 0, Infinity}]/(x*Exp[x]); q(x,n)= If[n == 0, 1, p(x, n) + x^n*p(1/x, n)]. 0
 1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 12, 8, 1, 1, 16, 35, 35, 16, 1, 1, 32, 105, 130, 105, 32, 1, 1, 64, 322, 490, 490, 322, 64, 1, 1, 128, 994, 1967, 2100, 1967, 994, 128, 1, 1, 256, 3061, 8232, 9597, 9597, 8232, 3061, 256, 1, 1, 512, 9375, 34855, 48405, 45654, 48405 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Row sums are: {1, 2, 4, 10, 30, 104, 406, 1754, 8280, 42294, 231950,...} LINKS FORMULA p(x,n) = Sum[m^n*x^m/m!, {m, 0, Infinity}]/(x*Exp[x]); q(x,n)= If[n == 0, 1, p(x, n) + x^n*p(1/x, n)]; t(n,m)=coefficients(q(x,n)). EXAMPLE {1}, {1, 1}, {1, 2, 1}, {1, 4, 4, 1}, {1, 8, 12, 8, 1}, {1, 16, 35, 35, 16, 1}, {1, 32, 105, 130, 105, 32, 1}, {1, 64, 322, 490, 490, 322, 64, 1}, {1, 128, 994, 1967, 2100, 1967, 994, 128, 1}, {1, 256, 3061, 8232, 9597, 9597, 8232, 3061, 256, 1}, {1, 512, 9375, 34855, 48405, 45654, 48405, 34855, 9375, 512, 1} MATHEMATICA Clear[p]; p[x_, n_] = Sum[m^n*x^m/m!, {m, 0, Infinity}]/(x*Exp[x]); q[x_, n_] = If[n == 0, 1, p[x, n] + x^n*p[1/x, n]]; Table[FullSimplify[ExpandAll[q[x, n]]], {n, 0, 10}]; Table[CoefficientList[FullSimplify[ExpandAll[q[x, n]]], x], {n, 0, 10}]; Flatten[%] CROSSREFS Sequence in context: A137854 A062715 A100631 * A064298 A256894 A099594 Adjacent sequences:  A154864 A154865 A154866 * A154868 A154869 A154870 KEYWORD nonn,uned,tabl AUTHOR Roger L. Bagula, Jan 16 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.