This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A154809 Numbers whose binary expansion is not palindromic. 13
 2, 4, 6, 8, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 24, 25, 26, 28, 29, 30, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 88 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Complement of A006995. The (a(n)-n+1)-th binary palindrome equals the greatest binary palindrome <= a(n). The corresponding formula identity is: A006995(a(n)-n+1)=A206913(a(n)). - Hieronymus Fischer, Mar 18 2012 A145799(a(n)) < a(n). - Reinhard Zumkeller, Sep 24 2015 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 FORMULA A030101(n) != n. - David W. Wilson, Jun 09 2009 A178225(a(n)) = 0. - Reinhard Zumkeller, Oct 21 2011 From Hieronymus Fischer, Feb 19 2012 and Mar 18 2012: (Start) Inversion formula: If d is any number from this sequence, then the index number n for which a(n)=d can be calculated by n=d+1-A206915(A206913(d)). Explicitly: Let p=A206913(d), m=floor(log_2(p)) and p>2, then: a(n)=d+1+(((5-(-1)^m)/2) + sum(k=1...floor(m/2)|(floor(p/2^k) mod 2)/2^k))*2^floor(m/2). Example 1: d=1000, A206913(d)=975, A206915(975)=62, hence n=1001-62=939. Example 2: d=10^6, A206913(d)=999471, A206915(999471)=2000, hence n=1000001-2000=998001. Recursion formulas: a(n+1)=a(n)+1+A178225(a(n)+1) Also:   Case 1: a(n+1)=a(n)+2, if A206914(a(n))=a(n)+1;   Case 2: a(n+1)=a(n)+1, else. Also:   Case 1: a(n+1)=a(n)+1, if A206914(a(n))>a(n)+1;   Case 2: a(n+1)=a(n)+2, else. Iterative calculation formula: Let f(0):=n+1, f(j):=n-1+A206915(A206913(f(j-1)) for j>0; then a(n)=f(j), if f(j)=f(j-1). The number of necessary steps is typically <4 and is limited by O(log_2(n)). Example 3: n=1000, f(0)=1001, f(1)=1061, f(2)=1064=f(3), hence a(1000)=1064. Example 4: n=10^6, f(0)=10^6+1, f(1)=1001999, f(2)=1002001=f(3), hence a(10^6)=1002001. Formula identity: a(n) = n-1 + A206915(A206913(a(n))). (End) EXAMPLE a(1)=2, since 2 = 10_2 is not binary palindromic. MAPLE ispali:= proc(n) local L; L:= convert(n, base, 2); ListTools:-Reverse(L)=L end proc: remove(ispali, [\$1..1000]); # Robert Israel, Jul 05 2015 MATHEMATICA palQ[n_Integer, base_Integer]:=Module[{idn=IntegerDigits[n, base]}, idn==Reverse[idn]]; Select[Range[1000], ! palQ[#, 2] &] (* Vincenzo Librandi, Jul 05 2015 *) PROG (Haskell) a154809 n = a154809_list !! (n-1) a154809_list = filter ((== 0) . a178225) [0..] (MAGMA) [n: n in [0..600] | not (Intseq(n, 2) eq Reverse(Intseq(n, 2)))]; // Vincenzo Librandi, Jul 05 2015 (PARI) isok(n) = binary(n) != Vecrev(binary(n)); \\ Michel Marcus, Jul 05 2015 CROSSREFS Cf. A006995, A154810, A164861, A206913, A206915. Cf. A145799. Sequence in context: A238898 A176995 A225793 * A153170 A067030 A072427 Adjacent sequences:  A154806 A154807 A154808 * A154810 A154811 A154812 KEYWORD easy,nonn,base AUTHOR Omar E. Pol, Jan 24 2009 EXTENSIONS Extended by Ray Chandler, Mar 14 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.