login
A154797
Odd partition numbers of even numbers.
7
1, 5, 11, 77, 135, 231, 385, 627, 1575, 8349, 17977, 26015, 75175, 147273, 281589, 386155, 526823, 966467, 3087735, 5392783, 9289091, 20506255, 44108109, 56634173, 72533807, 241265379, 304801365, 952050665, 1482074143, 6620830889
OFFSET
1,2
COMMENTS
Odd numbers in A058696.
LINKS
EXAMPLE
The odd number 5 is in the sequence as the partition number of the even number 4: (4, 3+1, 2+2, 2+1+1, 1+1+1+1). - Emeric Deutsch, Aug 02 2009
MAPLE
aa:= proc(n, i) if n=0 then 1 elif n<0 or i=0 then 0 else aa(n, i):= aa(n, i-1) +aa(n-i, i) fi end: a:= proc(n) local k; if n>1 then a(n-1) fi; for k from `if`(n=1, 0, b(n-1)+2) by 2 while irem(aa(k, k), 2)=0 do od; b(n):= k; aa(k, k) end: seq(a(n), n=1..40); # Alois P. Heinz, Jul 28 2009
with(combinat): a := proc (n) if `mod`(numbpart(2*n), 2) = 1 then numbpart(2*n) else end if end proc: seq(a(n), n = 0 .. 70); # Emeric Deutsch, Aug 02 2009
MATHEMATICA
Select[PartitionsP[2*Range[0, 100]], OddQ] (* Harvey P. Dale, Nov 30 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jan 26 2009
EXTENSIONS
More terms from Alois P. Heinz, Jul 28 2009
STATUS
approved