login
A154795
Odd partition numbers of odd numbers.
9
1, 3, 7, 15, 101, 297, 1255, 4565, 10143, 14883, 21637, 31185, 44583, 63261, 173525, 239943, 329931, 1121505, 1505499, 2679689, 3554345, 4697205, 6185689, 10619863, 18004327, 23338469, 30167357, 38887673, 49995925, 64112359, 82010177
OFFSET
1,2
COMMENTS
Odd numbers in A058695.
LINKS
EXAMPLE
7 is in the sequence because the odd number 5 has partition number 7 (5,41,32,311,2221,22111,1111111). - Emeric Deutsch, Aug 02 2009
MAPLE
aa:= proc(n, i) if n=0 then 1 elif n<0 or i=0 then 0 else aa(n, i):= aa(n, i-1) +aa(n-i, i) fi end: a:= proc(n) local k; if n>1 then a(n-1) fi; for k from `if`(n=1, 1, b(n-1)+2) by 2 while irem(aa(k, k), 2)=0 do od; b(n):= k; aa(k, k) end: seq(a(n), n=1..40); # Alois P. Heinz, Jul 28 2009
with(combinat): a := proc (n) if `mod`(numbpart(2*n-1), 2) = 1 then numbpart(2*n-1) else end if end proc: seq(a(n), n = 1 .. 50); # Emeric Deutsch, Aug 02 2009
MATHEMATICA
Reap[Do[If[OddQ[p = PartitionsP[n]], Sow[p]], {n, 1, 99, 2}]][[2, 1]] (* Jean-François Alcover, Aug 31 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jan 26 2009
EXTENSIONS
More terms from Alois P. Heinz, Jul 28 2009
STATUS
approved