login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A154748 Continued fraction for sqrt(sqrt(2) - 1), the radius vector of the point of bisection of the arc of the unit lemniscate (x^2 + y^2)^2 = x^2 - y^2 in the first quadrant. 6
0, 1, 1, 1, 4, 6, 1, 2, 2, 2, 1, 1, 6, 1, 179, 46, 1, 1, 3, 2, 1, 1, 3, 6, 3, 1, 1, 1, 1, 2, 1, 1, 56, 1, 1, 1, 1, 66, 1, 1, 2, 17, 8, 2, 7, 12, 1, 1, 8, 1, 2, 2, 1, 1, 2, 1, 12, 1, 2, 2, 2, 2, 1, 1, 1, 8, 1, 1, 1, 1, 2, 1, 2, 5, 1, 6, 8, 1, 1, 1, 2, 7, 1, 9, 1, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000

EXAMPLE

Sqrt(sqrt(2) - 1) = 0.643594252905582624735443437418... = [0; 1, 1, 1, 4, 6, 1, 2, 2, 2, 1, 1, 6, ...].

MATHEMATICA

nmax = 1000; ContinuedFraction[ Sqrt[Sqrt[2] - 1], nmax + 1]

PROG

(PARI) contfrac(sqrt(sqrt(2) - 1)) \\ Michel Marcus, Dec 10 2016

(MAGMA) ContinuedFraction(Sqrt(Sqrt(2)-1)); // Vincenzo Librandi, Dec 10 2016

CROSSREFS

Cf. A154747, A154749 and A154750 for the decimal expansion and the numerators and denominators of the convergents.

Sequence in context: A107951 A019646 A238582 * A190282 A164833 A248938

Adjacent sequences:  A154745 A154746 A154747 * A154749 A154750 A154751

KEYWORD

nonn,cofr,easy

AUTHOR

Stuart Clary, Jan 14 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 17 17:59 EST 2020. Contains 331999 sequences. (Running on oeis4.)