%I #18 Feb 04 2019 03:01:06
%S 1,1,3,1,5,1,3,5,7,3,7,1,5,7,11,1,3,11,13,3,5,11,13,1,5,7,11,13,17,1,
%T 3,7,13,17,19,3,5,17,19,1,5,7,11,13,17,19,23,3,7,19,23,5,11,17,23,1,7,
%U 11,13,17,19,23,29,1,3,13,19,29,31,3
%N Triangle read by rows in which row n lists all the pairs of noncomposite numbers that are equidistant from n, or only n if there are no such pairs, as shown below in the example.
%C If the extended Goldbach conjecture is true, such a pair exists in row n for all n >= 2. - _Nathaniel Johnston_, Apr 18 2011
%H Nathaniel Johnston, <a href="/A154723/b154723.txt">Table of n, a(n) for n = 1..8000</a>
%H Abel Jansma, <a href="https://esc.fnwi.uva.nl/thesis/centraal/files/f1541951402.pdf">E_8 Symmetry Structures in the Ising model</a>, Master's thesis, University of Amsterdam, 2018.
%H Wolfram MathWorld, <a href="http://mathworld.wolfram.com/GoldbachConjecture.html">Goldbach Conjecture</a>
%e Triangle begins:
%e 1
%e 1, 3
%e 1, 5
%e 1, 3, 5, 7
%e 3, 7,
%e 1, 5, 7, 11
%e 1, 3, 11, 13
%e 3, 5, 11, 13,
%e 1, 5, 7, 11, 13, 17
%e 1, 3, 7, 13, 17, 19
%p isnotcomp:=proc(n)return (n=1 or isprime(n)) end:
%p print(1):for n from 1 to 10 do for k from 1 to 2*n-1 do if(not k=n and (isnotcomp(k) and isnotcomp(2*n-k)))then print(k):fi:od:od: # _Nathaniel Johnston_, Apr 18 2011
%t Table[If[Length@ # == 1, #, DeleteCases[#, n]] &@ Union@ Flatten@ Select[IntegerPartitions[2 n, {2}], AllTrue[#, ! CompositeQ@ # &] &], {n, 17}] // Flatten (* _Michael De Vlieger_, Dec 06 2018 *)
%Y Cf. A000040, A008578, A154720, A154721, A154722, A154724, A154725, A154726, A154727.
%K easy,nonn,tabf
%O 1,3
%A _Omar E. Pol_, Jan 14 2009, Jan 16 2009
%E a(36)-a(70) from _Nathaniel Johnston_, Apr 18 2011