The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A154695 Generalized Sierpinski-Pascal-MacMahon gasket triangular sequence defined by T(n, m) = (r^(n-m)*q^m + r^m*q^(n-m))*b(n), where b(n) = coefficients of p(x, n) = 2^n*(1-x)^(n+1) * LerchPhi(x, -n, 1/2), and r=2, q=1. 4
 2, 3, 3, 5, 24, 5, 9, 138, 138, 9, 17, 760, 1840, 760, 17, 33, 4266, 20184, 20184, 4266, 33, 65, 24548, 210860, 376768, 210860, 24548, 65, 129, 143814, 2183652, 6233352, 6233352, 2183652, 143814, 129, 257, 851760, 22549616, 99411520, 149600448, 99411520, 22549616, 851760, 257 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Row sums are: {2, 6, 34, 294, 3394, 48966, 847714, 17121894, 395226754, 10263450246, 296140575394,...} LINKS G. C. Greubel, Rows n = 0..40 of triangle, flattened A. Lakhtakia, R. Messier, V. K. Varadan, V. V. Varadan, Use of combinatorial algebra for diffusion on fractals, Physical Review A, volume 34, Number 3 (1986) p. 2502, Fig. 3. FORMULA Let r = 2 and q = 1 then b(n) = the coefficients of p(x, n) =  2^n*(1 - x)^(n + 1)* LerchPhi(x, -n, 1/2). The triangle is then defined by T(n, m) = (r^(n-m)*q^m + r^m*q^(n-m))*b(n). EXAMPLE Triangle begins as:     2;     3,      3;     5,     24,       5;     9,    138,     138,       9;    17,    760,    1840,     760,      17;    33,   4266,   20184,   20184,    4266,      33;    65,  24548,  210860,  376768,  210860,   24548,     65;   129, 143814, 2183652, 6233352, 6233352, 2183652, 143814, 129; MATHEMATICA r = 2; q = 1; p[x_, n_] = 2^n*(1-x)^(n+1)*LerchPhi[x, -n, 1/2]; b:= Table[CoefficientList[Series[p[x, n], {x, 0, 30}], x], {n, 0, 20}]; T[n_, m_]:= (r^(n-m)*q^m + r^m*q^(n-m))*b[[n+1]][[m+1]]; Table[T[n, m], {n, 0, 12}, {m, 0, n}]//Flatten (* modified by G. C. Greubel, May 08 2019 *) CROSSREFS Sequence in context: A064776 A270592 A096659 * A154646 A046826 A323713 Adjacent sequences:  A154692 A154693 A154694 * A154696 A154697 A154698 KEYWORD nonn,tabl,less AUTHOR Roger L. Bagula and Gary W. Adamson, Jan 14 2009 EXTENSIONS Edited by G. C. Greubel, May 08 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 11 18:37 EDT 2020. Contains 336428 sequences. (Running on oeis4.)