This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A154693 Triangle T(n,m) = ( 2^(n-m)+2^m )*A008292(n+1,m+1) read by rows. 4
 2, 3, 3, 5, 16, 5, 9, 66, 66, 9, 17, 260, 528, 260, 17, 33, 1026, 3624, 3624, 1026, 33, 65, 4080, 23820, 38656, 23820, 4080, 65, 129, 16302, 154548, 374856, 374856, 154548, 16302, 129, 257, 65260, 993344, 3529360, 4998080, 3529360, 993344, 65260, 257 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Row sums are A000629(n+1). LINKS A. Lakhtakia, R. Messier, V. K. Varadan, V. V. Varadan, Use of combinatorial algebra for diffusion on fractals, Physical Review A, volume 34, Number 3 (1986) p. 2501, (FIG. 3) EXAMPLE The triangle starts in row n=0 with columns 0<=m<=n as: 2; 3, 3; 5, 16, 5; 9, 66, 66, 9; 17, 260, 528, 260, 17; 33, 1026, 3624, 3624, 1026, 33; 65, 4080, 23820, 38656, 23820, 4080, 65; 129, 16302, 154548, 374856, 374856, 154548, 16302, 129; 257, 65260, 993344, 3529360, 4998080, 3529360, 993344, 65260, 257; 513, 261354, 6314880, 32773824, 62896992, 62896992, 32773824, 6314880, 261354, 513; 1025, 1046504, 39685620, 299674368, 779049120, 1006351872, 779049120, 299674368, 39685620, 1046504, 1025; MATHEMATICA Clear[t, p, q, n, m]; p = 2; q = 1; t[n_, m_] =(p^(n - m)*q^m + p^m*q^(n - m))*Sum[(-1)^j*Binomial[n + 2, j]*(m - j + 1)^(n + 1), {j, 0, m + 1}]; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%] CROSSREFS Cf. A000629 Sequence in context: A053199 A045626 A154923 * A065854 A064776 A096659 Adjacent sequences:  A154690 A154691 A154692 * A154694 A154695 A154696 KEYWORD nonn,tabl AUTHOR Roger L. Bagula and Gary W. Adamson, Jan 14 2009 EXTENSIONS Definition simplified by the Assoc. Eds. of the OEIS - Aug 08 2010. STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .