OFFSET
0,1
COMMENTS
Row sums are A000629(n+1).
LINKS
A. Lakhtakia, R. Messier, V. K. Varadan, V. V. Varadan, Use of combinatorial algebra for diffusion on fractals, Physical Review A, volume 34, Number 3 (1986) p. 2501, (FIG. 3)
EXAMPLE
The triangle starts in row n=0 with columns 0<=m<=n as:
2;
3, 3;
5, 16, 5;
9, 66, 66, 9;
17, 260, 528, 260, 17;
33, 1026, 3624, 3624, 1026, 33;
65, 4080, 23820, 38656, 23820, 4080, 65;
129, 16302, 154548, 374856, 374856, 154548, 16302, 129;
257, 65260, 993344, 3529360, 4998080, 3529360, 993344, 65260, 257;
513, 261354, 6314880, 32773824, 62896992, 62896992, 32773824, 6314880, 261354, 513;
1025, 1046504, 39685620, 299674368, 779049120, 1006351872, 779049120, 299674368, 39685620, 1046504, 1025;
MATHEMATICA
Clear[t, p, q, n, m]; p = 2; q = 1;
t[n_, m_] =(p^(n - m)*q^m + p^m*q^(n - m))*Sum[(-1)^j*Binomial[n + 2, j]*(m - j + 1)^(n + 1), {j, 0, m + 1}];
Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}];
Flatten[%]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula and Gary W. Adamson, Jan 14 2009
EXTENSIONS
Definition simplified by the Assoc. Eds. of the OEIS - Aug 08 2010.
STATUS
approved