login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A154691 Expansion of (1+x+x^2)/((1-x-x^2)(1-x)). 5
1, 3, 7, 13, 23, 39, 65, 107, 175, 285, 463, 751, 1217, 1971, 3191, 5165, 8359, 13527, 21889, 35419, 57311, 92733, 150047, 242783, 392833, 635619, 1028455, 1664077, 2692535, 4356615, 7049153, 11405771, 18454927, 29860701, 48315631, 78176335 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index to sequences with linear recurrences with constant coefficients, signature (2,0,-1).

FORMULA

a(n+1)-a(n)=A006355(n+3) = A055389(n+3). a(n) = A066629(n-1)+A066629(n). a(n)=A006355(n+4)-3=A078642(n+1)-3.

a(n+1) = a(n) + 2*A000045(n+2). - Reinhard Zumkeller, Nov 17 2013

MAPLE

A := proc(n) coeftayl( (1+x+x^2)/(1-x-x^2)/(1-x), x=0, n) ; end: for n from 0 to 50 do printf("%d, ", A(n)) ; od:

MATHEMATICA

Fibonacci[Range[3, 5! ]]*2-3 [From Vladimir Joseph Stephan Orlovsky, Mar 19 2010]

CoefficientList[Series[(1 + x + x^2)/((1 - x - x^2)(1 - x)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 18 2012 *)

PROG

(Haskell)

a154691 n = a154691_list !! n

a154691_list = 1 : zipWith (+)

                   a154691_list (drop 2 $ map (* 2) a000045_list)

-- Reinhard Zumkeller, Nov 17 2013

CROSSREFS

Cf. A006355, A055389, A066629, A078642.

Cf. A001595, A166863.

Sequence in context: A136851 A155339 A122886 * A227121 A078447 A066624

Adjacent sequences:  A154688 A154689 A154690 * A154692 A154693 A154694

KEYWORD

easy,nonn

AUTHOR

R. J. Mathar, Jan 14 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified July 29 02:13 EDT 2014. Contains 245013 sequences.