login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A154691 Expansion of (1+x+x^2)/((1-x-x^2)(1-x)). 5
1, 3, 7, 13, 23, 39, 65, 107, 175, 285, 463, 751, 1217, 1971, 3191, 5165, 8359, 13527, 21889, 35419, 57311, 92733, 150047, 242783, 392833, 635619, 1028455, 1664077, 2692535, 4356615, 7049153, 11405771, 18454927, 29860701, 48315631, 78176335 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (2,0,-1).

FORMULA

a(n+1) - a(n) = A006355(n+3) = A055389(n+3).

a(n) = A066629(n-1) + A066629(n).

a(n) = A006355(n+4) - 3 = A078642(n+1) - 3.

a(n+1) = a(n) + 2*A000045(n+2). - Reinhard Zumkeller, Nov 17 2013

MAPLE

A154691 := proc(n) coeftayl( (1+x+x^2)/(1-x-x^2)/(1-x), x=0, n) ; end proc:

MATHEMATICA

Fibonacci[Range[3, 5! ]]*2-3 (* Vladimir Joseph Stephan Orlovsky, Mar 19 2010 *)

CoefficientList[Series[(1 + x + x^2)/((1 - x - x^2)(1 - x)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 18 2012 *)

PROG

(Haskell)

a154691 n = a154691_list !! n

a154691_list = 1 : zipWith (+)

                   a154691_list (drop 2 $ map (* 2) a000045_list)

-- Reinhard Zumkeller, Nov 17 2013

CROSSREFS

Cf. A006355, A055389, A066629, A078642.

Cf. A001595, A166863.

Sequence in context: A136851 A155339 A122886 * A227121 A078447 A066624

Adjacent sequences:  A154688 A154689 A154690 * A154692 A154693 A154694

KEYWORD

easy,nonn

AUTHOR

R. J. Mathar, Jan 14 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 14:45 EST 2016. Contains 278745 sequences.