|
|
A154687
|
|
Period 6: repeat [1, 4, 7, 8, 5, 2].
|
|
2
|
|
|
1, 4, 7, 8, 5, 2, 1, 4, 7, 8, 5, 2, 1, 4, 7, 8, 5, 2, 1, 4, 7, 8, 5, 2, 1, 4, 7, 8, 5, 2, 1, 4, 7, 8, 5, 2, 1, 4, 7, 8, 5, 2, 1, 4, 7, 8, 5, 2, 1, 4, 7, 8, 5, 2, 1, 4, 7, 8, 5, 2, 1, 4, 7, 8, 5, 2, 1, 4, 7, 8, 5, 2, 1, 4, 7, 8, 5, 2, 1, 4, 7, 8, 5, 2, 1, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Terms of the simple continued fraction of 1501/(sqrt(5071503)-1043). [Paolo P. Lava, Feb 17 2009]
Decimal expansion of 148/1001. [Paolo P. Lava, Aug 05 2009]
|
|
LINKS
|
Table of n, a(n) for n=0..85.
Index entries for linear recurrences with constant coefficients, signature (1,0,-1,1).
|
|
FORMULA
|
a(n) = (1/15)*{7*(n mod 6)+12*[(n+1) mod 6]+12*[(n+2) mod 6]+2*[(n+3) mod 6]-3*[(n+4) mod 6]-3*[(n+5) mod 6]}. [Paolo P. Lava, Jan 15 2009]
From Wesley Ivan Hurt, Jun 23 2016: (Start)
G.f.: (1+3*x+3*x^2+2*x^3) / (1-x+x^3-x^4).
a(n) = a(n-1) - a(n-3) + a(n-4) for n>3.
a(n) = (27 - cos(n*Pi) - 20*cos(n*Pi/3) + 4*sqrt(3)*sin(n*Pi/3))/6. (End)
|
|
MAPLE
|
A154687:=n->[1, 4, 7, 8, 5, 2][(n mod 6)+1]: seq(A154687(n), n=0..100); # Wesley Ivan Hurt, Jun 23 2016
|
|
MATHEMATICA
|
PadRight[{}, 72, {1, 4, 7, 8, 5, 2}] (* Harvey P. Dale, Nov 12 2011 *)
|
|
PROG
|
(MAGMA) &cat [[1, 4, 7, 8, 5, 2]^^20]; // Wesley Ivan Hurt, Jun 23 2016
|
|
CROSSREFS
|
Sequence in context: A151958 A176778 A021213 * A115021 A200367 A272490
Adjacent sequences: A154684 A154685 A154686 * A154688 A154689 A154690
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Paul Curtz, Jan 14 2009
|
|
STATUS
|
approved
|
|
|
|