This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A154676 Numbers n = 103*k^2 such that (n-1,n+1) is a twin prime pair (thus k = 6*m). 5
 2317500, 12047292, 26163648, 43250112, 47347452, 61704828, 168228252, 333720000, 351755712, 426127068, 513127872, 840143808, 979638768, 998790588, 1089276912, 1330434108, 1357220700, 1388809152, 1694467008, 1927570428, 1986835392, 2035992348, 2136108348, 2858437872, 3070594800, 3241626300, 3903322608 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Original definition: Averages of twin prime pairs n such that n*103 and n/103 are squares. All terms are of the form 3708*n^2. - Zak Seidov, Jan 15 2009 Obviously n*103 is a square iff n/103 is a square, say k^2. But n=103k^2 can't be the average of a twin prime pair unless it's a multiple of 6, thus k=6m and n=103*36*m^2. - M. F. Hasler, Apr 11 2009 LINKS MATHEMATICA lst={}; Do[If[PrimeQ[n-1]&&PrimeQ[n+1], s=(n*103)^(1/2); If[Floor[s]==s, AppendTo[lst, n]]], {n, 9!, 2*11!, 6}]; lst (*...and/or...*) lst={}; Do[If[PrimeQ[n-1]&&PrimeQ[n+1], s=(n/103)^(1/2); If[Floor[s]==s, AppendTo[lst, n]]], {n, 9!, 2*11!, 6}]; lst PROG (PARI) forstep(k=0, 1e4, 6, isprime(k^2*103+1) & isprime(k^2*103-1) & print1(k^2*103, ", ")) \\ - M. F. Hasler, Apr 11 2009 CROSSREFS Cf. A154670, A154671, A154672, A154673, A154674, A154675. Sequence in context: A252395 A256733 A210493 * A250926 A278200 A246226 Adjacent sequences:  A154673 A154674 A154675 * A154677 A154678 A154679 KEYWORD nonn,less AUTHOR Vladimir Joseph Stephan Orlovsky, Jan 14 2009 EXTENSIONS Edited and extended by M. F. Hasler, Apr 11 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.