login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A154672 Numbers n=5*k^2 such that n-1,n+1 are (twin) primes (thus k=6*m). 6
180, 1620, 8820, 35280, 87120, 151380, 302580, 380880, 691920, 737280, 808020, 1393920, 5020020, 5767380, 7712820, 9604980, 10281780, 11160180, 12450420, 12736080, 14723280, 15138000, 17186580, 17860500, 18663120, 18779220, 19129680, 21300480 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Original definition: Averages of twin prime pairs n such that n*5 and n/5 are squares.

Obviously, n*5 is a square iff n/5 is a square, say k^2. But n=5k^2 can't be the average of a twin prime pair unless it's a multiple of 6, thus k=6m and n=5*36*m^2. - M. F. Hasler, Apr 11 2009

LINKS

Table of n, a(n) for n=1..28.

FORMULA

A154672 = 5*A000290 intersect A014574 = 180*A000290 intersect A014574. - M. F. Hasler, Apr 11 2009

MATHEMATICA

lst={}; Do[If[PrimeQ[n-1]&&PrimeQ[n+1], s=(n*5)^(1/2); If[Floor[s]==s, AppendTo[lst, n]]], {n, 6, 10!, 6}]; lst (*...and/or...*) lst={}; Do[If[PrimeQ[n-1]&&PrimeQ[n+1], s=(n/5)^(1/2); If[Floor[s]==s, AppendTo[lst, n]]], {n, 6, 10!, 6}]; lst

PROG

(PARI) forstep(k=0, 1e4, 6, isprime(k^2*5+1) & isprime(k^2*5-1) & print1(k^2*5, ", ")) \\ - M. F. Hasler, Apr 11 2009

CROSSREFS

Cf. A154670 - A154676.

Sequence in context: A225932 A081380 A115184 * A211556 A184225 A099106

Adjacent sequences:  A154669 A154670 A154671 * A154673 A154674 A154675

KEYWORD

nonn

AUTHOR

Vladimir Joseph Stephan Orlovsky, Jan 13 2009

EXTENSIONS

Edited and extended by M. F. Hasler, Apr 11 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 18 04:44 EST 2019. Contains 329248 sequences. (Running on oeis4.)