login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A154671 Averages of twin prime pairs n such that n*3 and n/3 are squares. 5
12, 108, 192, 432, 1452, 2028, 3468, 4800, 10092, 18252, 106032, 139968, 221952, 284592, 299568, 355008, 549552, 618348, 720300, 786432, 823728, 961068, 995328, 1009200, 1138368, 1190700, 1291008, 1529388, 1537968, 1651692, 1948908 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..31.

FORMULA

a(n) = 12*A154331(n)^2 - M. F. Hasler, Jan 15 2009

EXAMPLE

12*3=36=6^2, 12/3=4=2^2,...

MATHEMATICA

lst={}; Do[If[PrimeQ[n-1]&&PrimeQ[n+1], s=(n*3)^(1/2); If[Floor[s]==s, AppendTo[lst, n]]], {n, 6, 10!, 6}]; lst...and/or... lst={}; Do[If[PrimeQ[n-1]&&PrimeQ[n+1], s=(n/3)^(1/2); If[Floor[s]==s, AppendTo[lst, n]]], {n, 6, 10!, 6}]; lst

Select[Mean/@Select[Partition[Prime[Range[150000]], 2, 1], #[[2]]-#[[1]] == 2&], AllTrue[{Sqrt[#/3], Sqrt[3#]}, IntegerQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Dec 06 2015 *)

PROG

(PARI) for(i=1, 999, isprime(12*i^2+1) && isprime(12*i^2-1) && print1(12*i^2", ")) \\ M. F. Hasler, Jan 15 2009

CROSSREFS

Cf. A154670.

Sequence in context: A166755 A230712 A271559 * A241230 A037972 A111990

Adjacent sequences:  A154668 A154669 A154670 * A154672 A154673 A154674

KEYWORD

nonn

AUTHOR

Vladimir Joseph Stephan Orlovsky, Jan 13 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 18 02:54 EST 2017. Contains 294840 sequences.