This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A154649 A triangular sequence of coefficients: p(x,n)=((-1)^(n + 1)*(x - 1)^(n + 1)*Sum[(2*m - 1)^n*x^m, {m, 0, Infinity}] + (-1)^(n + 1)*(x - 1)^(n + 1)*Sum[(2*m + 3)^n*x^m, {m, 0, Infinity}])/2. 0
 1, 1, 1, 5, -2, 5, 13, 11, 11, 13, 41, 108, 86, 108, 41, 121, 837, 962, 962, 837, 121, 365, 5258, 12163, 10508, 12163, 5258, 365, 1093, 30319, 130965, 160183, 160183, 130965, 30319, 1093, 3281, 165784, 1245980, 2503208, 2485414, 2503208, 1245980, 165784 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Row sums are:A000165 {1, 2, 8, 48, 384, 3840, 46080, 645120, 10321920, 185794560, 3715891200,...}. The row sums are equivalent to the MacMahon numbers rows sums. This results from a modular form bilinear approach summed: f1(x)=(2*x+3)/(-x); f2(x)=(2*x-1)/(-x). LINKS FORMULA p(x,n)=((-1)^(-1 + n)* (-1 + x)(1 - n) *((-1)^n+2*n*LerchPhi[x, -n, 1/2])+ (-1)^(-1 + n)* 2^n* (-1 + x)(1 - n) LerchPhi[x, -n, 3/2])/2; p(x,n)=((-1)^(n + 1)*(x - 1)^(n + 1)*Sum[(2*m - 1)^n*x^m, {m, 0, Infinity}] + (-1)^(n + 1)*(x - 1)^(n + 1)*Sum[(2*m + 3)^n*x^m, {m, 0, Infinity}])/2; t(n,m)=coefficients(p(x,n)) EXAMPLE {1}, {1, 1}, {5, -2, 5}, {13, 11, 11, 13}, {41, 108, 86, 108, 41}, {121, 837, 962, 962, 837, 121}, {365, 5258, 12163, 10508, 12163, 5258, 365}, {1093, 30319, 130965, 160183, 160183, 130965, 30319, 1093}, {3281, 165784, 1245980, 2503208, 2485414, 2503208, 1245980, 165784, 3281}, {9841, 878153, 10863860, 35584772, 45560654, 45560654, 35584772, 10863860, 878153, 9841}, {29525, 4558038, 89180081, 458019464, 852697082, 906922820, 852697082, 458019464, 89180081, 4558038, 29525} MATHEMATICA Clear[p]; p[x_, n_] = ((-1)^(n + 1)*(x - 1)^(n + 1)*Sum[(2*m - 1)^n*x^m, {m, 0, Infinity}] + (-1)^(n + 1)*(x - 1)^(n + 1)*Sum[(2*m + 3)^n*x^m, {m, 0, Infinity}])/2; Table[FullSimplify[ExpandAll[p[x, n]]], {n, 0, 10}]; Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]; Flatten[%] CROSSREFS Sequence in context: A201530 A085997 A071546 * A100040 A197271 A248260 Adjacent sequences:  A154646 A154647 A154648 * A154650 A154651 A154652 KEYWORD sign,tabl,uned AUTHOR Roger L. Bagula, Jan 13 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.