login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A154597 a(n) = 15*a(n-1) + a(n-2) with a(0) = 0, a(1) = 1. 11
0, 1, 15, 226, 3405, 51301, 772920, 11645101, 175449435, 2643386626, 39826248825, 600037119001, 9040383033840, 136205782626601, 2052127122432855, 30918112619119426, 465823816409224245, 7018275358757483101 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Lim_{n -> infinity} a(n)/a(n-1) = (15 + sqrt(229))/2. - Klaus Brockhaus, Oct 07 2009

For more information about this type of recurrence follow the Khovanova link and see A054413, A086902 and A178765. - Johannes W. Meijer, Jun 12 2010

For n >= 2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 15's along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011

a(n) equals the number of words of length n - 1 on alphabet {0,1,...,15} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..840 (a(0) = 0 added by Jianing Song)

Tanya Khovanova, Recursive sequences. [From Johannes W. Meijer, Jun 12 2010]

Index entries for linear recurrences with constant coefficients, signature (15, 1).

FORMULA

G.f.: x/(1 - 15*x - x^2). - Klaus Brockhaus, Jan 12 2009, corrected Oct 07 2009

a(n) = ((15 + sqrt(229))^n - (15 - sqrt(229))^n)/(2^n*sqrt(229)).

From Johannes W. Meijer, Jun 12 2010: (Start)

Lim_{k -> infinity} a(n+k)/a(k) = (A090301(n) + a(n)*sqrt(229))/2.

Lim_{n -> infinity} A090301(n)/a(n) = sqrt(229).

a(2n+1) = 15*A098245(n-1).

a(3n+1) = A041427(5n), a(3n+2) = A041427(5n+3), a(3n+3) = 2*A041427(5n+4). (End)

MATHEMATICA

a=0; lst={}; s=0; Do[a=s-(a-1); AppendTo[lst, a]; s+=a*15, {n, 3*4!}]; lst (* Vladimir Joseph Stephan Orlovsky, Oct 27 2009 *)

CoefficientList[Series[x/(1 - 15*x - x^2), {x, 0, 50}], x] (* G. C. Greubel, Apr 16 2017 *)

PROG

(MAGMA) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-229); S:=[ ((15+r)^n-(15-r)^n)/(2^n*r): n in [1..17] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jan 12 2009

(PARI) x='x+O('x^50); Vec(x/(1 - 15*x - x^2)) \\ G. C. Greubel, Apr 16 2017 *)

CROSSREFS

Row 15 of A172236.

First bisection is A098247.

Cf. A166125 (decimal expansion of sqrt(229)), A166126 (decimal expansion of (15 + sqrt(229))/2).

Cf. also A041427, A090301, A098245.

Sequences with g.f. 1/(1-k*x-x^2) or x/(1-k*x-x^2): A000045 (k=1), A000129 (k=2), A006190 (k=3), A001076 (k=4), A052918 (k=5), A005668 (k=6), A054413 (k=7), A041025 (k=8), A099371 (k=9), A041041 (k=10), A049666 (k=11), A041061 (k=12), A140455 (k=13), A041085 (k=14), this sequence (k=15), A041113 (k=16), A178765 (k=17), A041145 (k=18), A243399 (k=19), A041181 (k=20).

Sequence in context: A001024 A012643 A067222 * A041422 A129836 A075262

Adjacent sequences:  A154594 A154595 A154596 * A154598 A154599 A154600

KEYWORD

nonn,easy

AUTHOR

Al Hakanson (hawkuu(AT)gmail.com), Jan 12 2009

EXTENSIONS

Extended beyond a(7) by Klaus Brockhaus and Philippe Deléham, Jan 12 2009

Name from Philippe Deléham, Jan 12 2009

Edited by Klaus Brockhaus, Oct 07 2009

Missing a(0) added by Jianing Song, Jan 29 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 06:09 EST 2020. Contains 338833 sequences. (Running on oeis4.)