login
A154593
A triangle of polynomial coefficients:{a, b, c, d} = {2, 3, 3, 2}; p(x,n)=(-1)^(n)*(1 - d - c x)^(n + 1)*Sum[(a*k + b)^n*(c*x + d)^k, {k, 0, Infinity}].
1
1, -1, 3, 9, 6, 9, -73, -75, 9, 27, 849, 1644, 774, 108, 81, -12241, -33849, -28098, -6426, 243, 243, 211929, 763314, 938007, 442044, 60183, 1458, 729, -4280473, -18995271, -31035393, -22471479, -6681123, -528525, 3645, 2187, 98806689
OFFSET
0,3
COMMENTS
Row sums are:
{1, 2, 24, -112, 3456, -80128, 2417664, -83986432, 3340271616, -149428830208, \ 7427651272704,...}
This result is from a scan of {a,b,c,d} that are quadratic symmetric.
FORMULA
{a, b, c, d} = {2, 3, 3, 2};
p(x,n)=(-1)^(n)*(1 - d - c x)^(n + 1)*Sum[(a*k + b)^n*(c*x + d)^k, {k, 0, Infinity}];
t(n,m)=coefficients(p(x,n)).
p(x,n)=(-2)^n *(-1 - 3 x)^(1 + n)* LerchPhi[2 + 3 x, -n, 3/2]
EXAMPLE
{1},
{-1, 3},
{9, 6, 9},
{-73, -75, 9, 27},
{849, 1644, 774,108, 81},
{-12241, -33849, -28098, -6426, 243, 243},211929, 763314, 938007, 442044, 60183, 1458, 729},
{-4280473, -18995271, -31035393, -22471479, -6681123, -528525, 3645, 2187},
{98806689, 521068632, 1064559708, 1049509224, 501783174, 99717480, 4802652, 17496, 6561},
{-2565862561, -15676328181, -38479393620, -48196931796, -32188014414, -10798177878, -1481190948, -42996420, 45927, 19683},
{74035143849, 514213447902, 1474631881461, 2244768645096, 1936955084130, 932814106740, 227841626466, 22003372008, 387709173, 196830, 59049}
MATHEMATICA
Clear[p, a, b, c, d, n];
{a, b, c, d} = {2, 3, 3, 2};
p[x_, n_] = (-1)^(n)*(1 - d - c x)^(n + 1)*Sum[(a*k + b)^n*(c*x + d)^k, {k, 0, Infinity}];
Table[FullSimplify[ExpandAll[p[x, n]]], {n, 0, 10}];
Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}];
Flatten[%]
CROSSREFS
Sequence in context: A189272 A349403 A131954 * A283439 A134693 A096948
KEYWORD
uned,tabl,sign
AUTHOR
Roger L. Bagula, Jan 12 2009
STATUS
approved