login
A154579
Primes p = prime(k) such that all the digits of the concatenation of p and k are distinct.
2
2, 3, 5, 7, 13, 19, 23, 29, 37, 47, 53, 59, 67, 71, 73, 89, 97, 103, 107, 149, 167, 173, 197, 241, 269, 271, 281, 283, 347, 349, 359, 401, 439, 461, 463, 467, 487, 503, 521, 569, 593, 659, 683, 829, 839, 853, 863, 953, 1487, 1489, 1607, 1609, 1637, 2087, 2089
OFFSET
1,1
LINKS
Robert Israel, Table of n, a(n) for n = 1..101 (contains all the members of the sequence).
MAPLE
f:= proc(k) local p, Lk, Lp, m;
p:= ithprime(k);
Lk:= convert(k, base, 10);
Lp:= convert(p, base, 10);
if nops(Lk)+nops(Lp) = nops(convert(Lk, set) union convert(Lp, set)) then p fi
end proc:
map(f, [$1..10^5]); # Robert Israel, Oct 24 2019
MATHEMATICA
Do[a=FromDigits[Join[Flatten[IntegerDigits[{Prime[n], n}]]]]; If[Max[DigitCount[a]] == 1, Print[Prime[n]]], {n, 1, 10^3}] (* Metin Sariyar, Oct 25 2019 *)
Select[Prime[Range[400]], Max[DigitCount[# 10^IntegerLength[PrimePi[#]]+PrimePi[#]]]<2&] (* Harvey P. Dale, May 18 2023 *)
CROSSREFS
Cf. A000040.
Sequence in context: A077321 A216437 A165666 * A233134 A082885 A118371
KEYWORD
nonn,fini,full,base
AUTHOR
EXTENSIONS
Removed 43 (which shares digits with 14) and 479 (which shares digits with 92) - R. J. Mathar, Feb 27 2009
Edited by N. J. A. Sloane, Aug 04 2009
STATUS
approved