This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A154515 a(n) = 648*n^2 + 72*n + 1. 3
 721, 2737, 6049, 10657, 16561, 23761, 32257, 42049, 53137, 65521, 79201, 94177, 110449, 128017, 146881, 167041, 188497, 211249, 235297, 260641, 287281, 315217, 344449, 374977, 406801, 439921, 474337, 510049, 547057, 585361, 624961, 665857 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The identity (648*n^2 + 72*n + 1)^2 - (9*n^2 + n)*(216*n + 12)^2 = 1 can be written as a(n)^2 - A154517(n)*A154519(n)^2 = 1. This is the case s=3 of the identity (8*n^2*s^4 + 8*n*s^2 + 1)^2 - (n^2*s^2 + n)*(8*n*s^3 + 4*s)^2 = 1. - Vincenzo Librandi, Jan 30 2012 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..10000 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA From Colin Barker, Jan 25 2012: (Start) G.f.: x*(721 + 574*x + x^2)/(1-x)^3. a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(1)=721, a(2)=2737, a(3)=6049. (End) a(n) = 2*A161705(n)^2 - 1. - Bruno Berselli, Jan 31 2012 MATHEMATICA LinearRecurrence[{3, -3, 1}, {721, 2737, 6049}, 50] (* Vincenzo Librandi, Jan 30 2012 *) PROG (PARI) a(n)=648*n^2+72*n+1 \\ Charles R Greathouse IV, Dec 27 2011 (MAGMA) I:=[721, 2737, 6049]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jan 30 2012 CROSSREFS Cf. A154517, A154519. Sequence in context: A034179 A014440 A159295 * A241961 A318527 A053497 Adjacent sequences:  A154512 A154513 A154514 * A154516 A154517 A154518 KEYWORD nonn,easy AUTHOR Vincenzo Librandi, Jan 11 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 15:11 EST 2019. Contains 329960 sequences. (Running on oeis4.)