

A154515


a(n) = 648*n^2 + 72*n + 1.


3



721, 2737, 6049, 10657, 16561, 23761, 32257, 42049, 53137, 65521, 79201, 94177, 110449, 128017, 146881, 167041, 188497, 211249, 235297, 260641, 287281, 315217, 344449, 374977, 406801, 439921, 474337, 510049, 547057, 585361, 624961, 665857
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The identity (648*n^2 + 72*n + 1)^2  (9*n^2 + n)*(216*n + 12)^2 = 1 can be written as a(n)^2  A154517(n)*A154519(n)^2 = 1. This is the case s=3 of the identity (8*n^2*s^4 + 8*n*s^2 + 1)^2  (n^2*s^2 + n)*(8*n*s^3 + 4*s)^2 = 1.  Vincenzo Librandi, Jan 30 2012


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..10000
Index entries for linear recurrences with constant coefficients, signature (3,3,1).


FORMULA

From Colin Barker, Jan 25 2012: (Start)
G.f.: x*(721 + 574*x + x^2)/(1x)^3.
a(n) = 3*a(n1)  3*a(n2) + a(n3); a(1)=721, a(2)=2737, a(3)=6049. (End)
a(n) = 2*A161705(n)^2  1.  Bruno Berselli, Jan 31 2012


MATHEMATICA

LinearRecurrence[{3, 3, 1}, {721, 2737, 6049}, 50] (* Vincenzo Librandi, Jan 30 2012 *)


PROG

(PARI) a(n)=648*n^2+72*n+1 \\ Charles R Greathouse IV, Dec 27 2011
(MAGMA) I:=[721, 2737, 6049]; [n le 3 select I[n] else 3*Self(n1)3*Self(n2)+1*Self(n3): n in [1..50]]; // Vincenzo Librandi, Jan 30 2012


CROSSREFS

Cf. A154517, A154519.
Sequence in context: A034179 A014440 A159295 * A241961 A318527 A053497
Adjacent sequences: A154512 A154513 A154514 * A154516 A154517 A154518


KEYWORD

nonn,easy


AUTHOR

Vincenzo Librandi, Jan 11 2009


STATUS

approved



