login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A154515 a(n) = 648*n^2 + 72*n + 1. 3
721, 2737, 6049, 10657, 16561, 23761, 32257, 42049, 53137, 65521, 79201, 94177, 110449, 128017, 146881, 167041, 188497, 211249, 235297, 260641, 287281, 315217, 344449, 374977, 406801, 439921, 474337, 510049, 547057, 585361, 624961, 665857 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The identity (648*n^2 + 72*n + 1)^2 - (9*n^2 + n)*(216*n + 12)^2 = 1 can be written as a(n)^2 - A154517(n)*A154519(n)^2 = 1. This is the case s=3 of the identity (8*n^2*s^4 + 8*n*s^2 + 1)^2 - (n^2*s^2 + n)*(8*n*s^3 + 4*s)^2 = 1. - Vincenzo Librandi, Jan 30 2012

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..10000

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

From Colin Barker, Jan 25 2012: (Start)

G.f.: x*(721 + 574*x + x^2)/(1-x)^3.

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(1)=721, a(2)=2737, a(3)=6049. (End)

a(n) = 2*A161705(n)^2 - 1. - Bruno Berselli, Jan 31 2012

MATHEMATICA

LinearRecurrence[{3, -3, 1}, {721, 2737, 6049}, 50] (* Vincenzo Librandi, Jan 30 2012 *)

PROG

(PARI) a(n)=648*n^2+72*n+1 \\ Charles R Greathouse IV, Dec 27 2011

(MAGMA) I:=[721, 2737, 6049]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jan 30 2012

CROSSREFS

Cf. A154517, A154519.

Sequence in context: A034179 A014440 A159295 * A241961 A318527 A053497

Adjacent sequences:  A154512 A154513 A154514 * A154516 A154517 A154518

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Jan 11 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 15:11 EST 2019. Contains 329960 sequences. (Running on oeis4.)