%I #17 Dec 27 2018 03:48:35
%S 2,22388562459746799685433396747,805356826229750685152751618123101,
%T 689400380025917209087935611674203155791,
%U 3105808024815442289202546027249327480961,20662615055094927265669723508498824139849
%N Continue with summing & priming the A154423 (Level 5) list to level 6.
%C See comments on A153089.
%C Summed primes found after processing (probable) Prime[] :
%C 2, @Prime[1]
%C 22388562459746799685433396747, @Prime[57000046]
%C 805356826229750685152751618123101, @Prime[384411248]
%C ???
%C Currently searched to (probable) Prime[10^9] using a NTL+C program using Miller-witness 10 trials. Checked summed primes with PrimeQ[].
%C From Michael J Crowe (michaelcrowe117(AT)btinternet.com), Mar 16 2009: (Start)
%C 689400380025917209087935611674203155791, @Prime[4772152782]
%C 3105808024815442289202546027249327480961, @Prime[6288823330]
%C 20662615055094927265669723508498824139849, @Prime[8828698784]
%C (End)
%t lst2={}; s2=0; Do[s2=s2+Prime[n]; If[PrimeQ[s2], AppendTo[lst2, s2]], {n, 10^9}]; lst3={}; s3=0; Do[s3=s3+lst2[[n]]; If[PrimeQ[s3], AppendTo[lst3, s3]], {n,1,Length[lst2]}]; lst3; lst4={}; s4=0; Do[s4=s4+lst3[[n]];If[PrimeQ[s4], AppendTo[lst4, s4]], {n,1,Length[lst3]}]; lst4; lst5={}; s5=0; Do[s5=s5+lst4[[n]];If[PrimeQ[s5], AppendTo[lst5, s5]], {n,1,Length[lst4]}]; lst5; lst6={}; s6=0; Do[s6=s6+lst5[[n]];If[PrimeQ[s6], AppendTo[lst6, s6]], {n,1,Length[lst5]}]; lst6
%Y Cf. A000040 (Level 1), A013918 (Level 2), A153089 (Level 3), A154422 (Level 4), A154423 (Level 5).
%K nonn,more,uned,less
%O 1,1
%A Michael J. Crowe (michaelcrowe117(AT)btinternet.com), Jan 09 2009
%E a(4)-a(6) added by Michael J Crowe (michaelcrowe117(AT)btinternet.com), Mar 16 2009