login
A154424
Continue with summing & priming the A154423 (Level 5) list to level 6.
2
2, 22388562459746799685433396747, 805356826229750685152751618123101, 689400380025917209087935611674203155791, 3105808024815442289202546027249327480961, 20662615055094927265669723508498824139849
OFFSET
1,1
COMMENTS
See comments on A153089.
Summed primes found after processing (probable) Prime[] :
2, @Prime[1]
22388562459746799685433396747, @Prime[57000046]
805356826229750685152751618123101, @Prime[384411248]
???
Currently searched to (probable) Prime[10^9] using a NTL+C program using Miller-witness 10 trials. Checked summed primes with PrimeQ[].
From Michael J Crowe (michaelcrowe117(AT)btinternet.com), Mar 16 2009: (Start)
689400380025917209087935611674203155791, @Prime[4772152782]
3105808024815442289202546027249327480961, @Prime[6288823330]
20662615055094927265669723508498824139849, @Prime[8828698784]
(End)
MATHEMATICA
lst2={}; s2=0; Do[s2=s2+Prime[n]; If[PrimeQ[s2], AppendTo[lst2, s2]], {n, 10^9}]; lst3={}; s3=0; Do[s3=s3+lst2[[n]]; If[PrimeQ[s3], AppendTo[lst3, s3]], {n, 1, Length[lst2]}]; lst3; lst4={}; s4=0; Do[s4=s4+lst3[[n]]; If[PrimeQ[s4], AppendTo[lst4, s4]], {n, 1, Length[lst3]}]; lst4; lst5={}; s5=0; Do[s5=s5+lst4[[n]]; If[PrimeQ[s5], AppendTo[lst5, s5]], {n, 1, Length[lst4]}]; lst5; lst6={}; s6=0; Do[s6=s6+lst5[[n]]; If[PrimeQ[s6], AppendTo[lst6, s6]], {n, 1, Length[lst5]}]; lst6
CROSSREFS
Cf. A000040 (Level 1), A013918 (Level 2), A153089 (Level 3), A154422 (Level 4), A154423 (Level 5).
Sequence in context: A371468 A118019 A309966 * A100267 A176935 A257228
KEYWORD
nonn,more,uned,less
AUTHOR
Michael J. Crowe (michaelcrowe117(AT)btinternet.com), Jan 09 2009
EXTENSIONS
a(4)-a(6) added by Michael J Crowe (michaelcrowe117(AT)btinternet.com), Mar 16 2009
STATUS
approved