login
A154388
Triangle T(n,k), 0<=k<=n, read by rows given by [0,1,-1,0,0,0,0,0,0,0,...] DELTA [1,-1,-1,1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.
1
1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
0,1
FORMULA
Sum_{k=0..n} T(n,k)*x^(n-k) = A135528(n+1), A000012(n), A040001(n), A153284(n+1) for x = 0,1,2,3 respectively.
G.f.: (1+y*x+(y-y^2)*x^2)/(1-y^2*x^2). - Philippe Deléham, Dec 17 2011
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000012(n), A158302(n) for x = 0, 1, 2 respectively. - Philippe Deléham, Dec 17 2011
EXAMPLE
Triangle begins:
1;
0, 1;
0, 1, 0;
0, 0, 0, 1;
0, 0, 0, 1, 0;
0, 0, 0, 0, 0, 1; ...
CROSSREFS
Sequence in context: A089806 A274719 A014069 * A285136 A029694 A171894
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Jan 08 2009
STATUS
approved