login
A154382
The basic sequence using the Multi-Symbol Function with M()={+,-,*} indexed by prime numbers.
0
0, 2, 6, 2, 10, 4, 28, 20, 180, 1800, 1789, 1777, 23101
OFFSET
1,2
COMMENTS
Multi-Symbol Function (MSF) :
Define your own set of mathematical functions : M = {+,-,*} which have indices {0,1,2}.
MSF is
. . . . . . N
. . . . --------
M(i % 3) ------ i
. . . . --------
. . . . . i = 1
gives {
0 - 1 = -1, (1 % 3 => -)
-1 * 2 = -2, (2 % 3 => *)
-2 + 3 = 1, (3 % 3 => +)
1 - 4 = -3, (4 % 3 => -)
-3 * 5 = -15, (5 % 3 => *)
-9,-16,-128,-119,-129,-1419,...}
where % means mod.
Using M(p % 3) instead of M(i % 3) gives
MSF = {0,2,6,2,10,4,28,20,180,1800,1789,1777,23101,...}
where p = primes = {2,3,5,7,11,13,17,19,23,29,31,37,41,...},
giving M(p % 3)={*,+,*,-,*,-,*,-,*,*,-,-,*,...}.
If M()={+} then MSF=Summation=I pounds .
If M()={*} then MSF=Product= [unreadable nonascii omitted characters here]
If M(i % 3)={+,*,!} then MSF includes itself and
MSF={0,0,3,12,12!,12!+6,(12!+6)*7,[(12!+6)*7]!,...}.
CROSSREFS
Sequence in context: A002172 A126289 A200044 * A136762 A136697 A136761
KEYWORD
nonn,uned,obsc
AUTHOR
Michael J Crowe (mjcrowe(AT)tiscali.co.uk), Jan 08 2009
STATUS
approved